6.4.2: Uniqueness
( \newcommand{\kernel}{\mathrm{null}\,}\)
Sufficiently regular solutions of the initial-boundary value problem (6.4.1)-(6.4.3) are uniquely determined since from
ct=D△c in Ω×(0,∞)c(x,0)=0∂c∂n=0 on ∂Ω×(0,∞).
it follows that for each τ>0
0=∫τ0 ∫Ω (ctc−D(△c)c) dxdt=∫Ω ∫τ0 12∂∂t(c2) dtdx+D∫Ω ∫τ0 |∇xc|2 dxdt=12∫Ω c2(x,τ) dx+D∫Ω ∫τ0 |∇xc|2 dxdt.
Contributors and Attributions
Integrated by Justin Marshall.