Skip to main content
Mathematics LibreTexts

11.5: Additional Exercises- Automorphisms

  • Page ID
    81120
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    1

    Let \(\operatorname{Aut}(G)\) be the set of all automorphisms of \(G\text{;}\) that is, isomorphisms from \(G\) to itself. Prove this set forms a group and is a subgroup of the group of permutations of \(G\text{;}\) that is, \(\operatorname{Aut}(G) \leq S_G\text{.}\)

    2

    An inner automorphism of \(G\text{,}\)

    \[ i_g : G \rightarrow G\text{,} \nonumber \]

    is defined by the map

    \[ i_g(x) = g x g^{-1}\text{,} \nonumber \]

    for \(g \in G\text{.}\) Show that \(i_g \in \operatorname{Aut}(G)\text{.}\)

    3

    The set of all inner automorphisms is denoted by \(\operatorname{Inn}(G)\text{.}\) Show that \(\operatorname{Inn}(G)\) is a subgroup of \(\operatorname{Aut}(G)\text{.}\)

    4

    Find an automorphism of a group \(G\) that is not an inner automorphism.

    5

    Let \(G\) be a group and \(i_g\) be an inner automorphism of \(G\text{,}\) and define a map

    \[ G \rightarrow \operatorname{Aut}(G) \nonumber \]

    by

    \[ g \mapsto i_g\text{.} \nonumber \]

    Prove that this map is a homomorphism with image \(\operatorname{Inn}(G)\) and kernel \(Z(G)\text{.}\) Use this result to conclude that

    \[ G/Z(G) \cong \operatorname{Inn}(G)\text{.} \nonumber \]

    6

    Compute \(\operatorname{Aut}(S_3)\) and \(\operatorname{Inn}(S_3)\text{.}\) Do the same thing for \(D_4\text{.}\)

    7

    Find all of the homomorphisms \(\phi : {\mathbb Z} \rightarrow {\mathbb Z}\text{.}\) What is \(\operatorname{Aut}({\mathbb Z})\text{?}\)

    8

    Find all of the automorphisms of \({\mathbb Z}_8\text{.}\) Prove that \(\operatorname{Aut}({\mathbb Z}_8) \cong U(8)\text{.}\)

    9

    For \(k \in {\mathbb Z}_n\text{,}\) define a map \(\phi_k : {\mathbb Z}_n \rightarrow {\mathbb Z}_n\) by \(a \mapsto ka\text{.}\) Prove that \(\phi_k\) is a homomorphism.

    10

    Prove that \(\phi_k\) is an isomorphism if and only if \(k\) is a generator of \({\mathbb Z}_n\text{.}\)

    11

    Show that every automorphism of \({\mathbb Z}_n\) is of the form \(\phi_k\text{,}\) where \(k\) is a generator of \({\mathbb Z}_n\text{.}\)

    12

    Prove that \(\psi : U(n) \rightarrow \operatorname{Aut}({\mathbb Z}_n)\) is an isomorphism, where \(\psi : k \mapsto \phi_k\text{.}\)


    This page titled 11.5: Additional Exercises- Automorphisms is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Thomas W. Judson (Abstract Algebra: Theory and Applications) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?