19.5: Exercises
- Page ID
- 81193
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Draw the lattice diagram for the power set of \(X = \{ a, b, c, d \}\) with the set inclusion relation, \(\subset\text{.}\)
Draw the diagram for the set of positive integers that are divisors of \(30\text{.}\) Is this poset a Boolean algebra?
Draw a diagram of the lattice of subgroups of \({\mathbb Z}_{12}\text{.}\)
Let \(B\) be the set of positive integers that are divisors of \(210\text{.}\) Define an order on \(B\) by \(a \preceq b\) if \(a \mid b\text{.}\) Prove that \(B\) is a Boolean algebra. Find a set \(X\) such that \(B\) is isomorphic to \({\mathcal P}(X)\text{.}\)
Prove or disprove: \({\mathbb Z}\) is a poset under the relation \(a \preceq b\) if \(a \mid b\text{.}\)
Draw the switching circuit for each of the following Boolean expressions.
- \(\displaystyle (a \vee b \vee a') \wedge a\)
- \(\displaystyle (a \vee b)' \wedge (a \vee b)\)
- \(\displaystyle a \vee (a \wedge b)\)
- \(\displaystyle (c \vee a \vee b) \wedge c' \wedge (a \vee b)'\)
Draw a circuit that will be closed exactly when only one of three switches \(a\text{,}\) \(b\text{,}\) and \(c\) are closed.
Prove or disprove that the two circuits shown are equivalent.
Let \(X\) be a finite set containing \(n\) elements. Prove that \(|{\cal P}(X)| = 2^n\text{.}\) Conclude that the order of any finite Boolean algebra must be \(2^n\) for some \(n \in {\mathbb N}\text{.}\)
For each of the following circuits, write a Boolean expression. If the circuit can be replaced by one with fewer switches, give the Boolean expression and draw a diagram for the new circuit.
Prove or disprove: The set of all nonzero integers is a lattice, where \(a \preceq b\) is defined by \(a \mid b\text{.}\)
Let \(L\) be a nonempty set with two binary operations \(\vee\) and \(\wedge\) satisfying the commutative, associative, idempotent, and absorption laws. We can define a partial order on \(L\text{,}\) as in Theorem \(19.14\), by \(a \preceq b\) if \(a \vee b = b\text{.}\) Prove that the greatest lower bound of \(a\) and \(b\) is \(a \wedge b\text{.}\)
Let \(G\) be a group and \(X\) be the set of subgroups of \(G\) ordered by set-theoretic inclusion. If \(H\) and \(K\) are subgroups of \(G\text{,}\) show that the least upper bound of \(H\) and \(K\) is the subgroup generated by \(H \cup K\text{.}\)
Let \(R\) be a ring and suppose that \(X\) is the set of ideals of \(R\text{.}\) Show that \(X\) is a poset ordered by set-theoretic inclusion, \(\subset\text{.}\) Define the meet of two ideals \(I\) and \(J\) in \(X\) by \(I \cap J\) and the join of \(I\) and \(J\) by \(I + J\text{.}\) Prove that the set of ideals of \(R\) is a lattice under these operations.
Let \(B\) be a Boolean algebra. Prove each of the following identities.
- \(a \vee I = I\) and \(a \wedge O = O\) for all \(a \in B\text{.}\)
- If \(a \vee b = I\) and \(a \wedge b = O\text{,}\) then \(b = a'\text{.}\)
- \((a')'=a\) for all \(a \in B\text{.}\)
- \(I' = O\) and \(O' = I\text{.}\)
- \((a \vee b)' = a' \wedge b'\) and \((a \wedge b)' = a' \vee b'\) (De Morgan's laws).
By drawing the appropriate diagrams, complete the proof of Theorem \(19.30\) to show that the switching functions form a Boolean algebra.
Let \(B\) be a Boolean algebra. Define binary operations \(+\) and \(\cdot\) on \(B\) by
\begin{align*} a + b & = (a \wedge b') \vee (a' \wedge b)\\ a \cdot b & = a \wedge b\text{.} \end{align*}
Prove that \(B\) is a commutative ring under these operations satisfying \(a^2 = a\) for all \(a \in B\text{.}\)
Let \(X\) be a poset such that for every \(a\) and \(b\) in \(X\text{,}\) either \(a \preceq b\) or \(b \preceq a\text{.}\) Then \(X\) is said to be a totally ordered set.
- Is \(a \mid b\) a total order on \({\mathbb N}\text{?}\)
- Prove that \({\mathbb N}\text{,}\) \({\mathbb Z}\text{,}\) \({\mathbb Q}\text{,}\) and \({\mathbb R}\) are totally ordered sets under the usual ordering \(\leq\text{.}\)
Let \(X\) and \(Y\) be posets. A map \(\phi : X \rightarrow Y\) is order-preserving if \(a \preceq b\) implies that \(\phi(a) \preceq \phi(b)\text{.}\) Let \(L\) and \(M\) be lattices. A map \(\psi: L \rightarrow M\) is a lattice homomorphism if \(\psi( a \vee b ) = \psi(a) \vee \psi(b)\) and \(\psi( a \wedge b ) = \psi(a) \wedge \psi(b)\text{.}\) Show that every lattice homomorphism is order-preserving, but that it is not the case that every order-preserving homomorphism is a lattice homomorphism.
Let \(B\) be a Boolean algebra. Prove that \(a = b\) if and only if \((a \wedge b') \vee ( a' \wedge b) = O\) for \(a, b \in B\text{.}\)
Let \(B\) be a Boolean algebra. Prove that \(a = O\) if and only if \((a \wedge b') \vee ( a' \wedge b) = b\) for all \(b \in B\text{.}\)
Let \(L\) and \(M\) be lattices. Define an order relation on \(L \times M\) by \(( a, b) \preceq (c, d)\) if \(a \preceq c\) and \(b \preceq d\text{.}\) Show that \(L \times M\) is a lattice under this partial order.