Skip to main content
Mathematics LibreTexts

20.2: Subspaces

  • Page ID
    81200
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Just as groups have subgroups and rings have subrings, vector spaces also have substructures. Let \(V\) be a vector space over a field \(F\text{,}\) and \(W\) a subset of \(V\text{.}\) Then \(W\) is a subspace of \(V\) if it is closed under vector addition and scalar multiplication; that is, if \(u, v \in W\) and \(\alpha \in F\text{,}\) it will always be the case that \(u + v\) and \(\alpha v\) are also in \(W\text{.}\)

    Example \(20.6\)

    Let \(W\) be the subspace of \({\mathbb R}^3\) defined by \(W = \{ (x_1, 2 x_1 + x_2, x_1 - x_2) : x_1, x_2 \in {\mathbb R} \}\text{.}\) We claim that \(W\) is a subspace of \({\mathbb R}^3\text{.}\) Since

    Solution

    \begin{align*} \alpha (x_1, 2 x_1 + x_2, x_1 - x_2) & = (\alpha x_1, \alpha(2 x_1 + x_2), \alpha( x_1 - x_2))\\ & = (\alpha x_1, 2(\alpha x_1) + \alpha x_2, \alpha x_1 -\alpha x_2)\text{,} \end{align*}

    \(W\) is closed under scalar multiplication. To show that \(W\) is closed under vector addition, let \(u = (x_1, 2 x_1 + x_2, x_1 - x_2)\) and \(v = (y_1, 2 y_1 + y_2, y_1 - y_2)\) be vectors in \(W\text{.}\) Then

    \[ u + v = (x_1 + y_1, 2( x_1 + y_1) +( x_2 + y_2), (x_1 + y_1) - (x_2+ y_2))\text{.} \nonumber \]

    Example \(20.7\)

    Let \(W\) be the subset of polynomials of \(F[x]\) with no odd-power terms. If \(p(x)\) and \(q(x)\) have no odd-power terms, then

    Solution

    neither will \(p(x) + q(x)\text{.}\) Also, \(\alpha p(x) \in W\) for \(\alpha \in F\) and \(p(x) \in W\text{.}\)

    Let \(V\) be any vector space over a field \(F\) and suppose that \(v_1, v_2, \ldots, v_n\) are vectors in \(V\) and \(\alpha_1, \alpha_2, \ldots, \alpha_n\) are scalars in \(F\text{.}\) Any vector \(w\) in \(V\) of the form

    \[ w = \sum_{i=1}^n \alpha_i v_i = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n \nonumber \]

    is called a linear combination of the vectors \(v_1, v_2, \ldots, v_n\text{.}\) The spanning set of vectors \(v_1, v_2, \ldots, v_n\) is the set of vectors obtained from all possible linear combinations of \(v_1, v_2, \ldots, v_n\text{.}\) If \(W\) is the spanning set of \(v_1, v_2, \ldots, v_n\text{,}\) then we say that \(W\) is spanned by \(v_1, v_2, \ldots, v_n\text{.}\)

    Proposition \(20.8\)

    Let \(S= \{v_1, v_2, \ldots, v_n \}\) be vectors in a vector space \(V\text{.}\) Then the span of \(S\) is a subspace of \(V\text{.}\)

    Proof

    Let \(u\) and \(v\) be in \(S\text{.}\) We can write both of these vectors as linear combinations of the \(v_i\)'s:

    \begin{align*} u & = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n\\ v & = \beta_1 v_1 + \beta_2 v_2 + \cdots + \beta_n v_n\text{.} \end{align*}

    Then

    \[ u + v =( \alpha_1 + \beta_1) v_1 + (\alpha_2+ \beta_2) v_2 + \cdots + (\alpha_n + \beta_n) v_n \nonumber \]

    is a linear combination of the \(v_i\)'s. For \(\alpha \in F\text{,}\)

    \[ \alpha u = (\alpha \alpha_1) v_1 + ( \alpha \alpha_2) v_2 + \cdots + (\alpha \alpha_n ) v_n \nonumber \]

    is in the span of \(S\text{.}\)

     


    This page titled 20.2: Subspaces is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Thomas W. Judson (Abstract Algebra: Theory and Applications) via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?