Skip to main content
Mathematics LibreTexts

2.5: Group Conventions and Properties

  • Page ID
    84856
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Before we discuss more examples, we present a theorem and look at some conventions we follow and notation we use when discussing groups in general; we also discuss some properties of groups. 

    2.5.1: Some Group Conventions

    Theorem \(\PageIndex{1}\)

    The identity element of a group is unique (by Theorem 2.1.9), and given any element \(a\) of a group \(G\text{,}\) the inverse of \(a\) in \(G\) is unique (by Theorem \(2.1.2\)).

    Note

    Although it is written in what we call multiplicative notation, do not assume \(a^{-1}\) is what we usually think of as a multiplicative inverse for \(a\text{;}\) remember, we don't even know if elements of a group are numbers! The type of inverse that \(a^{-1}\) is (a multiplicative inverse for a real number? an additive inverse for a real number? a multiplicative inverse for a matrix? an inverse function for a function from \(\mathbb{R}\) to \(\mathbb{R}\text{?}\)) depends on both \(G\)'s elements and its operation.

    Note

    Be careful to always know where an element you are working with lives! For instance, if, as above, \(n\in \mathbb{Z}^+\) and \(a\) is a group element, \(-n\) and \(-a\) look similar but may mean very different things. While \(-n\) is a negative integer, \(-a\) may be the additive inverse of a matrix in \(\mathbb{M}_2(\mathbb{R})\text{,}\) the additive inverse \(2\) of the number \(4\) in \(\mathbb{Z}_6\text{,}\) or even something completely unrelated to numbers.

    We summarize multiplicative versus addition notation in the following table, where \(a,b\) are elements of a group \(G\text{.}\)

    Table 2.5.1: Summary of Multiplicative and Addition Notation in Groups.
      Multiplicative Notation Additive Notation
    Operation Notation \(\cdot\) \(+\)
    \(a\) operated with \(b\) \(ab\) \(a+b\)
    Identity Element \(e\) or \(e_G\) (or \(1\)) \(e\) or \(e_G\) (or \(0\))
    Inverse of \(a\) \(a^{-1}\) \(-a\)

    Finally:

     

    2.5.2: Some Group Properties

    While we don't need to worry about “order” when multiplying a group element \(a\) by itself, we do need to worry about it in general.

    Note

    Group operations need not be commutative!

    Definition: Abelian and Nonabelian

    A group \(\langle G, \cdot\,\rangle\) is said to be abelian if \(ab=ba\) for all \(a,b\in G\text{.}\) Otherwise, \(G\) is nonabelian. (The word “abelian” derives from the surname of mathematician Niels Henrik Abel.)

    Definition: Order, Finite Group, and Infinite Group

    If \(G\) is a group, then the cardinality \(|G|\) of \(G\) is called the order of \(G\). If \(|G|\) is finite, then \(G\) is said to be a finite group; otherwise, it's an infinite group.

    Example \(\PageIndex{1}\)

    Of the groups we've discussed, which are abelian? Which are infinite/finite?

    We have already seen that identity elements of groups are unique, and that each element \(a\) of a group \(G\) has a unique inverse \(a^{-1}\in G\text{.}\) Here are some other basic properties of groups.

    Theorem \(\PageIndex{2}\)

    If \(\langle G, \cdot \rangle\) is a group, then left and right cancellation laws hold in \(G\text{.}\) That is, if \(a,b,c\in G\text{,}\) then

    1. If \(ab=ac\text{,}\) we have \(b=c\) (the left cancellation law); and
    2. If \(ba=ca\text{,}\) we have \(b=c\) (the right cancellation law).
    Proof

    Let \(a,b,c∈G\) and assume that \(ab=ac\). Multiplying both equation sides on the left by \(a^{−1}\), we obtain

    \(\begin{array}& &2 & &a^{−1}(ab)=a^{−1}(ac) \\ & &\Rightarrow &(a^{−1}a)b=(a^{−1}a)c \\ & &\Rightarrow &eb=ec \\ & &\Rightarrow &b=c  \end{array}\)

    This proves that the left cancellation law holds. A similar proof shows that the right cancellation law holds.

    Note

    We only of necessity have \((ab)^{-1}=a^{-1}b^{-1}\) if \(G\) is known to be abelian!

    However, we do have the following:

    Theorem \(\PageIndex{4}\)

     
    Proof

    We have that

     

    \((ab)(b^{−1}a^{−1})=a(bb^{−1})a^{−1}=aea^{−1}=aa^{−1}=e\)

    Similarly, (b−1a−1)(ab)=e.

     


    This page titled 2.5: Group Conventions and Properties is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jessica K. Sklar via source content that was edited to the style and standards of the LibreTexts platform.