Skip to main content
Mathematics LibreTexts

3.4: Exercises

  • Page ID
    84808
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    1. True/False. For each of the following, write T if the statement is true; otherwise, write F. You do NOT need to provide explanations or show work for this problem. Throughout, let \(G\) and \(G'\) be groups.
    1. If there exists a homomorphism \(\phi\,:\,G\to G'\text{,}\) then \(G\) and \(G'\) must be isomorphic groups.
    2. There is an integer \(n\geq 2\) such that \(\mathbb{Z}\simeq \mathbb{Z}_n\text{.}\)
    3. If \(|G|=|G'|=3\text{,}\) then we must have \(G\simeq G'\text{.}\)
    4. If \(|G|=|G'|=4\text{,}\) then we must have \(G\simeq G'\text{.}\)

     

    1. For each of the following functions, prove or disprove that the function is (i) a homomorphism; (ii) an isomorphism. (Remember to work with the default operation on each of these groups!)
    1. The function \(f:\mathbb{Z}\to\mathbb{Z}\) defined by \(f(n)=2n\text{.}\)
    2. The function \(g:\mathbb{R}\to\mathbb{R}\) defined by \(g(x)=x^2\text{.}\)
    3. The function \(h:\mathbb{Q}^*\to\mathbb{Q}^*\) defined by \(h(x)=x^2\text{.}\)

     

    1. Define \(d : GL(2,\mathbb{R})\to \mathbb{R}^*\) by \(d(A)=\det A\text{.}\) Prove/disprove that \(d\) is:
    1. a homomorphism
    2. 1-1
    3. onto
    4. an isomorphism.
    1. Complete the group tables for \(\mathbb{Z}_4\) and \(\mathbb{Z}_8^{\times}\text{.}\) Use the group tables to decide whether or not \(\mathbb{Z}_4\) and \(\mathbb{Z}_8^{\times}\) are isomorphic to one another. (You do not need to provide a proof.)
    1. Let \(n\in \mathbb{Z}^+\text{.}\) Prove that \(\langle n\mathbb{Z},+\rangle \simeq \langle \mathbb{Z},+\rangle\text{.}\)
    2.  
    1. Let \(G\) and \(G'\) be groups, where \(G\) is abelian and \(G\simeq G'\text{.}\) Prove that \(G'\) is abelian.
    2. Give an example of groups \(G\) and \(G'\text{,}\) where \(G\) is abelian and there exists a homomorphism from \(G\) to \(G'\text{,}\) but \(G'\) is NOT abelian.
    1. Let \(\langle G,\cdot\rangle\) and \(\langle G',\cdot'\rangle\) be groups with identity elements \(e\) and \(e'\text{,}\) respectively, and let \(\phi\) be a homomorphism from \(G\) to \(G'\text{.}\) Let \(a\in G\text{.}\) Prove that \(\phi(a)^{-1}=\phi(a^{-1})\text{.}\)

    This page titled 3.4: Exercises is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jessica K. Sklar via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?