6.4: Cayley's Theorem
- Page ID
- 84823
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)One might wonder how “common” permutation groups are in math. They are, it turns out, ubiquitous in abstract algebra: in fact, every group can be thought of as a group of permutations! We will prove this, but we first need the following lemma. (We will not use the maps \(\rho_a\) or \(c_a\text{,}\) defined below, in our theorem, but define them here for potential future use.)
Lemma \(\PageIndex{1}\)
Let \(G\) be a group and \(a\in G\text{.}\) Then the following functions are permutations on \(G\text{,}\) and hence are elements of \(S_G\text{:}\)
- \(\lambda_a\,:\,G\to G\) defined by \(\lambda_a(x)=ax\text{;}\)
- \(\rho_a\,:\,G\to G\) defined by \(\rho_a(x)=xa\text{;}\)
- \(c_a\,:\,G\to G\) defined by \(c_a(x)=axa^{-1}\text{.}\)
- Proof
-
To show that \(λ_a\) is a bijection, first assume \(x_1,x_2∈G\) with \(λ_a(x_1)=λ_a(x_2)\). Then \(ax_1=ax_2\); so, by left cancellation, \(x_1=x_2\). Thus, \(λ_a\) is one-to-one. Further, each \(y∈G\) equals \(λ_a(a^{−1}y)\) for \(a^{−1}y∈G\), so \(λ_a\) is onto. Thus, \(λ_a\) is a bijection from \(G\) to \(G\): that is, it's a permutation on \(G\). The proofs that \(ρ_a\) and \(c_a\) are bijections are similar.
Definition: Left Multiplication, Right Multiplication, and Conjugation
We say that \(\lambda_a\text{,}\) \(\rho_a\text{,}\) and \(c_a\) perform on \(G\text{,}\) respectively, left multiplication by \(a\), right multiplication by \(a\), and conjugation by \(a\). (Note: Sometimes when people talk about conjugation by \(a\) they instead are referring to the permutation of \(G\) that sends each \(x\) to \(a^{-1}xa\text{.}\))
Now we are ready for our theorem:
Theorem \(\PageIndex{1}\): Cayley's Theorem
Let \(G\) be a group. Then \(G\) is isomorphic to a subgroup of \(S_G\text{.}\) Thus, every group can be thought of as a group of permutations.
- Proof
-
For each \(a∈G\), let \(λ_a\) be defined, as above, by \(λ_a(x)=ax\) for each \(x∈G\); recall that each \(λ_a\) is in \(S_G\). Now define \(\phi:G→S_G\) by \(\phi(a)=λ_a\), for each \(a∈G\).
We claim that \(\phi\) is both a homomorphism and one-to-one. Indeed, let \(a,b∈G\). Now, \(\phi(a)\phi(b)\) and \(\phi(ab)\) are both functions with domain \(G\), so we need to show \((\phi(a)\phi(b))(x)=(\phi(ab))(x)\) for each \(x∈G\). Well, let \(x∈G\). Then
\(\begin{array}& (\phi(a)\phi(b))(x)&=(λ_aλ_b)(x)\\ &=λ_a(λ_b(x)) &(\text{since the operation on \(S_G\) is composition})\\ & =λ_a(bx)&\\ &=a(bx)&\\ &=(ab)x&\\ &=λ_{ab}(x)&\\ &=(\phi(ab))(x).& \end{array}\)
So \(\phi\) is a homomorphism. Further, if \(a,b∈G\) with \(\phi(a)=\phi(b)\), then \(λ_a=λ_b\). In particular, \(λ_a(e)=λ_b(e)\). But \(λ_a(e)=ae=a\) and \(λ_b(e)=be=b\), so \(a=b\). Thus, \(\phi\) is one-to-one.
Since by definition \(\phi(G)\) we have that \(\phi\) maps \(G\) onto \(\phi(G)\), we conclude that \(\phi\) provides an isomorphism from \(G\) to the subgroup \(\phi(G)\) of \(S_G\).
Remark
In general, \(\phi(G) \neq S_G\text{,}\) so we cannot conclude that \(G\) is isomorphic to \(S_G\) itself; rather, we may only conclude that it is is isomorphic to some subgroup of \(S_G\text{.}\)
Remark
While we chose to use the maps \(\lambda_a\) to prove the above theorem, we could just as well have used the maps \(\rho_a\) or \(c_a\text{,}\) instead.