Skip to main content
Mathematics LibreTexts

6.3: Alternating Groups

  • Page ID
    84822
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Note that every \(k\)-cycle \((a_1a_2\ldots a_k)\in S_n\) can be written as a product of (not necessarily disjoint) transpositions:

    \begin{equation*} (a_1a_2\ldots a_k)=(a_1a_k)(a_1a_{k-1})\cdots(a_1a_3)(a_1a_2). \end{equation*}

    We, therefore, have the following theorem.

    Theorem \(\PageIndex{1}\)

    Every permutation in \(S_n\) can be written as a product of transpositions.

    Theorem \(\PageIndex{2}\)

    Every permutation in \(S_n\) is even or odd, but not both.

    Proof

    We already know that every permutation in \(S_n\) is a product of transpositions, so must be even or odd. For proof that no permutation is both even and odd, see, for instance, Proof 1 or 2 of Theorem 9.15 on p. 91 in [1].

    Lemma \(\PageIndex{1}\)

    For each \(2\leq k\leq n\text{,}\) then a \(k\)-cycle is even if \(k\) is odd, and odd if \(k\) is even.

    We have the following theorem, whose proof is left as an exercise for the reader.

    Theorem \(\PageIndex{3}\)

    The set of all even permutations in \(S_n\) is a subgroup of \(S_n\text{.}\)

    We end with this theorem, whose proof can be found on p. 93 of [1].

    Theorem \(\PageIndex{4}\)

    \(|A_n|= \dfrac{(n!)}{2} \text{.}\)


    This page titled 6.3: Alternating Groups is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jessica K. Sklar via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.