Skip to main content
Mathematics LibreTexts

8.1: Motivation

  • Page ID
    84829
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We mentioned previously that given a subgroup \(H\) of \(G\text{,}\) we'd like to use \(H\) to get at some understanding of \(G\)'s entire structure. Recall that we've defined \(G/H\) to be the set of all left cosets of \(H\) in \(G\text{.}\) What we'd like to do now is equip \(G/H\) with some operation under which \(G/H\) is a group! The natural way to do this would be to define multiplication on \(G/H\) by

    \begin{equation*} (aH)(bH)=abH \text{ for all } a,b\in G. \end{equation*}

    Ok, so let's do that! But wait: we're defining this operation by referring to coset representatives, so we'd better make sure our operation is well-defined. Only it sadly turns out that in general this operation is not well-defined. For example:

    Example \(\PageIndex{1}\)

    Let \(H=\langle (12)\rangle\) in \(S_3\text{,}\) and let \(a=(13)\) and \(b=(132)\text{.}\) Let \(x=aH\) and \(y=bH\) in \(S_3/H\text{.}\) Then using the above-defined operation on \(G/H\) we'd have

    \begin{equation*} xy=(aH)(bH)=abH=(13)(132)H=(23)H. \end{equation*}

    But also \(x=(123)H\) and \(y=(23)H\text{,}\) so we'd also have

    \begin{equation*} xy=((123)H)((23)H))=(123)(23)H=(12)H=H\neq (23)H. \end{equation*}

    So this operation isn't well-defined.

    The question for us now becomes: what conditions must hold for \(H\) in \(G\) in order for operation

    \begin{equation*} (aH)(bH)=abH \end{equation*}

    on \(G/H\) to be well-defined? It turns out that this operation is well-defined exactly when \(H\) is normal in \(G\text{!}\) We state this in the following theorem:

    Theorem \(\PageIndex{1}\)

    Let \(H\leq G\text{.}\) Then the operation

    \begin{equation*} (aH)(bH)=abH \end{equation*}

    on \(G/H\) is well-defined if and only if \(H \unlhd G\text{.}\)

    Proof

    First, assume that the described operation is well-defined. Let \(a∈G\); we want to show that \(aH=Ha\).

    Well, let \(x∈aH\). Then

    \((xH)(a^{−1}H)=xa^{−1}H\)

    and, since \(xH=aH\)

    \((xH)(a^{−1}H)=(aH)(a^{−1}H)=aa^{−1}H=H\).

    Since our operation on \(G/H\) is well-defined, this means that \(xa^{−1}H=H\), so \(xa^{−1}∈H\); thus, \(x∈Ha\). We conclude that \(aH⊆Ha\). The proof that \(Ha⊆aH\) is similar. So \(aH=Ha\), and thus, since \(a∈G\) was arbitrary, \(H\) is normal in \(G\).

    Conversely, assume \(H⊴G\). Let \(a_1,a_2,b_1,b_2∈G\) with \(a_1H=a_2H\) and \(b_1H=b_2H\). We want to show that then \(a_1b_1H=a_2b_2H\), that is, that \((a_2b_2)^{−1}a_1b_1∈H\). Well, since \(a_1H=a_2H\) we have \(a_2^{−1}a_1∈H\). So

    \((a_2b_2)^{−1}a_1b_1=b_2^{−1}(a_2^{−1}a_1)b_1∈b_2^{−1}Hb_1\).

    Next, since \(H⊴G\), we have \(Hb_1=b_1H\), so \(b_2^{−1}Hb_1=b^{−1}_2b_1H\); but since \(b_1H=b_2H\), we have \(b_2^{−1}b_1∈H\), so \(b^{−1}_2b_1H=H\). Thus, \((a_2b_2)^{−1}a_1b_1∈H\), as desired.

    It is clear that normal subgroups will be very important for us in studying group structures. We therefore spend some time looking at normal subgroups before returning to equipping \(G/H\) with a group structure.


    This page titled 8.1: Motivation is shared under a GNU Free Documentation License 1.3 license and was authored, remixed, and/or curated by Jessica K. Sklar via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?