Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

Notation

( \newcommand{\kernel}{\mathrm{null}\,}\)

The following table defines the notation used in this book. Page numbers or references refer to the first appearance of each symbol.

Symbol Description Location
xS x is an element of S Definition 1.1.2
xS x is not an element of S Definition 1.1.2
the empty set, {} Definition 1.1.2
Z the set of all integers Example 1.1.1
Q the set of all rational numbers Example 1.1.1
R the set of all real numbers Example 1.1.1
C the set of all complex numbers Example 1.1.1
N the set of all natural numbers, {0,1,2,} Example 1.1.1
Z+,Q+,R+ the set of all positive elements of Z,Q,R Example 1.1.1
Z,Q,R the set of all negative elements of Z,Q,R Example 1.1.1
Z,Q,R,C the set of all nonzero elements of Z,Q,R,C Example 1.1.1
Mm×n(S) the set of all m×n matrices over S Definition 1.1.3
Mn(S) the set of all n×n matrices over S Definition 1.1.3
AB A is a subset of the B Definition 1.1.4
AB A is a proper subset of B Definition 1.1.4
P(A) the power set of A Definition 1.1.5
AB the intersection of A and B Definition 1.1.6
AB the union of A and B Definition 1.1.6
AB the difference of A and B Definition 1.1.6
iIAi {x:xAi for some iI} Definition 1.1.6
iIAi {x:xAi for every iI} Definition 1.1.6
A×B the direct product of A and B Definition 1.1.7
f:ST function f from S to T Definition 1.2.1
f(U) the image of a set U under f Definition 1.2.1
f(V) the preimage of a set V under f Definition 1.2.1
fg the composition of f with g Definition 1.2.3
1S the identity function on S Definition 1.2.3
f1 the inverse of f Theorem 1.2.2
|S| the cardinality of S Definition 1.3.1
S, binary structure Definition 2.1.1
e the identity element in a binary structure/group Definition 2.1.4
det the determinant of A Definition 2.4.1
GL(n,\mathbb{R}) the general linear group of degree n over \mathbb{R} Definition 2.4.1
I_n the n\times n identity matrix Theorem 2.4.1
e_G the identity element in a group G Convention 2.5.1
a^{-1} the inverse of a in a group Convention 2.5.1
-a the inverse of a in an abelian group Item
n\mathbb{Z} \{nm\,:\,m\in \mathbb{Z}\} Example 2.6.1
a\equiv_n b a is congruent to b mod n Definition 2.6.1
R_n(a) the remainder when a is divided by n Definition 2.6.2
+_n addition modulo n Definition 2.6.3
\mathbb{Z}_n the cyclic group of order n Example 2.6.3
\mathbb{Z}_n^{\times} \{a\in \mathbb{Z}_n\,:\,\gcd(a,n)=1\} Definition 2.6.7
F the set of all functions from \mathbb{R} to \mathbb{R} Example 2.6.6
B the set of all bijections from \mathbb{R} to \mathbb{R} Example 2.6.7
Z(G) the center of a group G Exercise 2.8.9
C^1 the set of all differentiable functions from \mathbb{R} to \mathbb{R} whose derivatives are continuous Item 6
C^0 the set of all continuous functions from \mathbb{R} to \mathbb{R} Item 7
c_a conjugation by a Example 3.2.2
G\simeq G' G is isomorphic to G' Definition 3.3.1
G\not \simeq G' G is not isomorphic to G' Definition 3.3.1
H\leq G H is a subgroup of G Definition 4.1.1
H\not \leq G H is not a subgroup of G Definition 4.1.1
\langle a \rangle the (cyclic) subgroup generated by a Definition 5.1.2
o(a) the order of element a Definition 5.1.2
S_A the set of all permutations on A Definition 6.1.3
S_n the symmetric group on n letters Definition 6.2.1
A_n the alternating group on n letters Definition 6.3.2
\lambda_a left multiplication by a Definition 6.4.1
\rho_a right multiplication by a Definition 6.4.1
\mapsto maps to Paragraph
D_n the dihedral group of order 2n Definition 6.5.1
xRy x is related to y Definition 7.1.2
x\not R y x is not related to y Definition 7.1.2
[x] the equivalence class of x Definition 7.1.4
a\sim_L b a^{-1}b\in H\text{,} where H\leq G is specified Definition 7.2.1
a\sim_R b ab^{-1}\in H\text{,} where H\leq G is specified Definition 7.2.1
aH, a+H the left coset of H containing a Definition 7.2.2
Ha, H+a the right coset of H containing a Definition 7.2.2
\Leftrightarrow if and only if Note 7.2
H\unlhd G H is a normal subgorup of G Definition 7.2.3
G/H the set of all left cosets of H in G Definition 7.2.4
(G:H) |G/H| Definition 7.3.1
aHb \{ahb\,:h\in H\} Definition 8.2.1
\text{Ker} \phi the kernel of \phi Definition 8.2.3
G/N the factor group G/N\text{,} when N\unlhd G Definition 8.3.1
\Psi the canonical epimorphism from G to G/N Definition 8.3.3
S^1 the unit circle \{e^{i\theta} \,:\, \theta\in  f\} in the complex plane Paragraph
 
  • Was this article helpful?

Support Center

How can we help?