Notation
- Page ID
- 89327
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The following table defines the notation used in this book. Page numbers or references refer to the first appearance of each symbol.
Symbol | Description | Location |
---|---|---|
\(x \in S\) | \(x\) is an element of \(S\) | Definition 1.1.2 |
\(x \not\in S\) | \(x\) is not an element of \(S\) | Definition 1.1.2 |
\(\emptyset\) | the empty set, \(\{\}\) | Definition 1.1.2 |
\(\mathbb{Z}\) | the set of all integers | Example 1.1.1 |
\(\mathbb{Q}\) | the set of all rational numbers | Example 1.1.1 |
\(\mathbb{R}\) | the set of all real numbers | Example 1.1.1 |
\(\mathbb{C}\) | the set of all complex numbers | Example 1.1.1 |
\(\mathbb{N}\) | the set of all natural numbers, \(\{0,1,2,\ldots\}\) | Example 1.1.1 |
\(\mathbb{Z}^+,\mathbb{Q}^+,\mathbb{R}^+\) | the set of all positive elements of \(\mathbb{Z},\mathbb{Q},\mathbb{R}\) | Example 1.1.1 |
\(\mathbb{Z}^-,\mathbb{Q}^-,\mathbb{R}^-\) | the set of all negative elements of \(\mathbb{Z},\mathbb{Q},\mathbb{R}\) | Example 1.1.1 |
\(\mathbb{Z}^*,\mathbb{Q}^*,\mathbb{R}^*,\mathbb{C}^*\) | the set of all nonzero elements of \(\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C}\) | Example 1.1.1 |
\(\mathbb{M}_{m\times n}(S)\) | the set of all \(m \times n\) matrices over \(S\) | Definition 1.1.3 |
\(\mathbb{M}_n(S)\) | the set of all \(n \times n\) matrices over \(S\) | Definition 1.1.3 |
\(A\subseteq B\) | \(A\) is a subset of the \(B\) | Definition 1.1.4 |
\(A\subsetneq B\) | \(A\) is a proper subset of \(B\) | Definition 1.1.4 |
\(P(A)\) | the power set of \(A\) | Definition 1.1.5 |
\(A\cap B\) | the intersection of \(A\) and \(B\) | Definition 1.1.6 |
\(A\cup B\) | the union of \(A\) and \(B\) | Definition 1.1.6 |
\(A - B\) | the difference of \(A\) and \(B\) | Definition 1.1.6 |
\(\bigcup_{i\in I}A_i\) | \(\{x: x\in A_i \text{ for some } i\in I\}\) | Definition 1.1.6 |
\(\bigcap_{i\in I}A_i\) | \(\{x: x\in A_i \text{ for every } i\in I\}\) | Definition 1.1.6 |
\(A\times B\) | the direct product of \(A\) and \(B\) | Definition 1.1.7 |
\(f:S\to T\) | function \(f\) from \(S\) to \(T\) | Definition 1.2.1 |
\(f(U)\) | the image of a set \(U\) under \(f\) | Definition 1.2.1 |
\(f^{\leftarrow}(V)\) | the preimage of a set \(V\) under \(f\) | Definition 1.2.1 |
\(f\circ g\) | the composition of \(f\) with \(g\) | Definition 1.2.3 |
\(1_S\) | the identity function on \(S\) | Definition 1.2.3 |
\(f^{-1}\) | the inverse of \(f\) | Theorem 1.2.2 |
\(|S|\) | the cardinality of \(S\) | Definition 1.3.1 |
\(\langle S, *\rangle \) | binary structure | Definition 2.1.1 |
\(e\) | the identity element in a binary structure/group | Definition 2.1.4 |
\(\det A\) | the determinant of \(A\) | Definition 2.4.1 |
\(GL(n,\mathbb{R})\) | the general linear group of degree \(n\) over \(\mathbb{R}\) | Definition 2.4.1 |
\(I_n\) | the \(n\times n\) identity matrix | Theorem 2.4.1 |
\(e_G\) | the identity element in a group \(G\) | Convention 2.5.1 |
\(a^{-1}\) | the inverse of \(a\) in a group | Convention 2.5.1 |
\(-a\) | the inverse of \(a\) in an abelian group | Item |
\(n\mathbb{Z}\) | \(\{nm\,:\,m\in \mathbb{Z}\}\) | Example 2.6.1 |
\(a\equiv_n b\) | \(a\) is congruent to \(b\) mod \(n\) | Definition 2.6.1 |
\(R_n(a)\) | the remainder when \(a\) is divided by \(n\) | Definition 2.6.2 |
\(+_n\) | addition modulo \(n\) | Definition 2.6.3 |
\(\mathbb{Z}_n\) | the cyclic group of order \(n\) | Example 2.6.3 |
\(\mathbb{Z}_n^{\times}\) | \(\{a\in \mathbb{Z}_n\,:\,\gcd(a,n)=1\}\) | Definition 2.6.7 |
\(F\) | the set of all functions from \(\mathbb{R}\) to \(\mathbb{R}\) | Example 2.6.6 |
\(B\) | the set of all bijections from \(\mathbb{R}\) to \(\mathbb{R}\) | Example 2.6.7 |
\(Z(G)\) | the center of a group \(G\) | Exercise 2.8.9 |
\(C^1\) | the set of all differentiable functions from \(\mathbb{R}\) to \(\mathbb{R}\) whose derivatives are continuous | Item 6 |
\(C^0\) | the set of all continuous functions from \(\mathbb{R}\) to \(\mathbb{R}\) | Item 7 |
\(c_a\) | conjugation by \(a\) | Example 3.2.2 |
\(G\simeq G'\) | \(G\) is isomorphic to \(G'\) | Definition 3.3.1 |
\(G\not \simeq G'\) | \(G\) is not isomorphic to \(G'\) | Definition 3.3.1 |
\(H\leq G\) | \(H\) is a subgroup of \(G\) | Definition 4.1.1 |
\(H\not \leq G\) | \(H\) is not a subgroup of \(G\) | Definition 4.1.1 |
\(\langle a \rangle \) | the (cyclic) subgroup generated by \(a\) | Definition 5.1.2 |
\(o(a)\) | the order of element \(a\) | Definition 5.1.2 |
\(S_A\) | the set of all permutations on \(A\) | Definition 6.1.3 |
\(S_n\) | the symmetric group on \(n\) letters | Definition 6.2.1 |
\(A_n\) | the alternating group on \(n\) letters | Definition 6.3.2 |
\(\lambda_a\) | left multiplication by \(a\) | Definition 6.4.1 |
\(\rho_a\) | right multiplication by \(a\) | Definition 6.4.1 |
\(\mapsto\) | maps to | Paragraph |
\(D_n\) | the dihedral group of order \(2n\) | Definition 6.5.1 |
\(xRy\) | \(x\) is related to \(y\) | Definition 7.1.2 |
\(x\not R y\) | \(x\) is not related to \(y\) | Definition 7.1.2 |
\([x]\) | the equivalence class of \(x\) | Definition 7.1.4 |
\(a\sim_L b \) | \(a^{-1}b\in H\text{,}\) where \(H\leq G\) is specified | Definition 7.2.1 |
\(a\sim_R b\) | \(ab^{-1}\in H\text{,}\) where \(H\leq G\) is specified | Definition 7.2.1 |
\(aH, a+H\) | the left coset of \(H\) containing \(a\) | Definition 7.2.2 |
\(Ha, H+a\) | the right coset of \(H\) containing \(a\) | Definition 7.2.2 |
\(\Leftrightarrow\) | if and only if | Note 7.2 |
\(H\unlhd G\) | \(H\) is a normal subgorup of \(G\) | Definition 7.2.3 |
\(G/H\) | the set of all left cosets of \(H\) in \(G\) | Definition 7.2.4 |
\((G:H)\) | \(|G/H|\) | Definition 7.3.1 |
\(aHb\) | \(\{ahb\,:h\in H\}\) | Definition 8.2.1 |
\(\text{Ker} \phi\) | the kernel of \(\phi\) | Definition 8.2.3 |
\(G/N\) | the factor group \(G/N\text{,}\) when \(N\unlhd G\) | Definition 8.3.1 |
\(\Psi\) | the canonical epimorphism from \(G\) to \(G/N\) | Definition 8.3.3 |
\(S^1\) | the unit circle \(\{e^{i\theta} \,:\, \theta\in f\}\) in the complex plane | Paragraph |