Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

2.E: Graphing Functions and Inequalities (Exercises)

  • Anonymous
  • LibreTexts

( \newcommand{\kernel}{\mathrm{null}\,}\)

Exercise 2.E.1

Determine the domain and range and state whether the function is a relation or not.

1. {(4,1),(5,3),(10,3),(11,2),(15,1)}

2. {(3,0),(2,1),(1,3),(2,7),(2,5)}

3.

a61f2c5f837df9a2a116562e3991567f.png
Figure 2.E.1

4.

1ed756585e2258ea7d1e1d216300ce03.png
Figure 2.E.2

5.

6bca3209efde75958e81d7a944b01c0f.png
Figure 2.E.3

6.

c13508b8b1e2731cd179beeef1010d48.png
Figure 2.E.4

7.

09e0fe607265a54a821df68b5a8da600.png
Figure 2.E.5

8.

97028b434ef145d542b952ac78932c4d.png
Figure 2.E.6
Answer

1. Domain: {5,4,10,11,15}; range: {1,1,2,3}; function: yes

3. Domain: {5,5,15,30}; range: {5,0,5,10,15}; function: no

5. Domain: (,); range: [6,); function: yes

7. Domain: (,32]; range: [1,); function yes

Exercise 2.E.2

Evaluate.

  1. h(x)=12x3;h(8),h(3), and h(4a+1)
  2. p(x)=4x;p(10),p(0), and p(5a1)
  3. f(x)=2x2x+3; find f(5),f(0), and f(x+h)
  4. g(x)=x29; find f(3),f(2), and f(x+h)
  5. g(x)=2x1; find g(5),g(1),g(13)
  6. h(x)=3x+6; find h(7),h(6), and h(21)
  7. f(x)=8x+3; find x where f(x)=10.
  8. g(x)=53x; find x where g(x)=4.
  9. Given the graph of f(x) below, find f(60),f(0), and f(20).
751d4e2986f76245f47b1ad041c342a4.png
Figure 2.E.7

10. . Given the graph of g(x) below, find x where g(x)=4 and g(x)=12.

e9c737b5992119bbca37f6af559e0463.png
Figure 2.E.8
Answer

1. h(8)=7,h(3)=32, and h(4a+1)=2a52

3. f(5)=58,f(0)=3, and f(x+h)=2x2+4xh+2h2xh+3

5. g(5)=3,g(1)=1,g(13)=5

7. f(78)=10

9. f(60)=20,f(0)=20,f(20)=0

Exercise 2.E.3

Graph and label the intercepts.

  1. 4x8y=12
  2. 9x+4y=6
  3. 38x+12y=54
  4. 34x12y=1
Answer

1.

d51568b8aacba97ad21f9b0d9f14f954.png
Figure 2.E.9

3.

a3cdd7fc127769413cc058e7351788d2.png
Figure 2.E.10

Exercise 2.E.4

Graph the linear function and label the x-intercept.

  1. g(x)=58x+10
  2. g(x)=15x3
  3. f(x)=4x+12
  4. f(x)=3x5
  5. h(x)=23x
  6. h(x)=6
Answer

1.

931e3f021377c605cb3046e51e289f7a.png
Figure 2.E.11

3.

24a0d3fe843539e8a8a63fd2d44162db.png
Figure 2.E.12

5.

ac99829520bad1115ac0508fa83efc90.png
Figure 2.E.13

Exercise 2.E.5

Find the slope of the line passing through the given points.

  1. (5,3) and (4,1)
  2. (7,8) and (9,2)
  3. (45,13) and (110,35)
  4. (38,1) and (34,116)
  5. (14,7) and (10,7)
  6. (6,5) and (6,2)
Answer

1. m=2

3. m=43

5. m=0

Exercise 2.E.6

Graph f and g on the same rectangular coordinate plane. Use the graph to find all values of x for which the given relation is true. Verify your answer algebraically.

  1. f(x)=12x2,g(x)=52x+4;f(x)=g(x)
  2. f(x)=5x2,g(x)=3;f(x)g(x)
  3. f(x)=4x+3,g(x)=x+6;f(x)<g(x)
  4. f(x)=35x1,g(x)=35x+5;f(x)g(x)
Answer

1. x=2

3. (1,)

Exercise 2.E.7

Find the linear function passing through the given points.

  1. (1,5) and (12,4)
  2. (53,3) and (2,8)
  3. (7,6) and (5,7)
  4. (5,6) and (3,9)
  5. Find the equation of the given linear function:
b507718cfbf1987b682736ad5f44f88f.png
Figure 2.E.14

6. Find the equation of the given linear function:

18bee4c6b0c8396e1c9554830d34bf2e.png
Figure 2.E.15
Answer

1. f(x)=2x3

3. f(x)=12x192

5. f(x)=37x107

Exercise 2.E.8

Find the equation of the line:

  1. Parallel to 8x3y=24 and passing through (9,4).
  2. Parallel to 6x+2y=24 and passing through (12,2).
  3. Parallel to 14x23y=1 and passing through (4,1).
  4. Perpendicular to 14x+7y=10 and passing through (8,3).
  5. Perpendicular to 15x3y=6 and passing through (3,1).
  6. Perpendicular to 29x+43y=12 and passing through (2,7).
Answer

1. y=83x+28

3. y=38x52

5. y=15x+25

Exercise 2.E.9

Use algebra to solve the following.

  1. A taxi fare in a certain city includes an initial charge of $2.50 plus $2.00 per mile driven. Write a function that gives the cost of a taxi ride in terms of the number of miles driven. Use the function to determine the number of miles driven if the total fare is $9.70.
  2. A salesperson earns a base salary of $1,800 per month and 4.2% commission on her total sales for that month. Write a function that gives her monthly salary based on her total sales. Use the function to determine the amount of sales for a month in which her salary was $4,824.
  3. A certain automobile sold for $1,200 in 1980, after which it began to be considered a collector’s item. In 1994, the same automobile sold at auction for $5,750. Write a linear function that models the value of the automobile in terms of the number of years since 1980. Use it to estimate the value of the automobile in the year 2000.
  4. A specialized industrial robot was purchased new for $62,400. It has a lifespan of 12 years, after which it will be considered worthless. Write a linear function that models the value of the robot. Use the function to determine its value after 8 years of operation.
  5. In 1950, the U.S. Census Bureau estimated the population of Detroit, MI to be 1.8 million people. In 1990, the population was estimated to have decreased to 1 million. Write a linear function that gives the population of Detroit in millions of people, in terms of years since 1950. Use the function to estimate the year in which the population decreased to 700,000 people.
  6. Online sales of a particular product are related to the number of clicks on its advertisement. It was found that 100 clicks in a week result in $112 of online sales, and that 500 clicks result in $160 of online sales. Write a linear function that models the online sales of the product based on the number of clicks on its advertisement. How many clicks are needed to result in $250 of weekly online sales from this product?
  7. The cost in dollars of producing n bicycles is given by the formula C(n)=80n+3,380. If each bicycle can be sold for $132, write a function that gives the profit generated by producing and selling n bicycles. Use the formula to determine the number of bicycles that must be produced and sold to profit at least $10,000.
  8. Determine the breakeven point from the previous exercise.
Answer

1. C(x)=2x+2.5;3.6 miles

3. V(t)=325t+1,200;$7,700

5. p(x)=0.02x+1.8;2005

7. P(n)=52n3,380;258 bicycles

Exercise 2.E.10

Find the ordered pair that specifies the point P.

1.

Figure 2.E.16

2.

2c800f862e8f0905d0c50866733110f9.png
Figure 2.E.17

3.

5b9ccb492de957897ff12ddc30187931.png
Figure 2.E.18

4.

0296c2f1606ec138e3240fca3f36f473.png
Figure 2.E.19
Answer

1. (32,23)

3. (25,25)

Exercise 2.E.11

Graph the piecewise defined functions.

  1. g(x)={x2 if x<510 if x5
  2. g(x)={5 if x<5|x| if x5
  3. f(x)={x if x1x3 if x>1
  4. f(x)={x if x4x if x>4
  5. h(x)={x if x<3x2 if 3x<36 if x3
  6. f(x)={1 if x<1x2 if 1x01x if x>0
  7. g(x)={1 if x10 if 1<x11 if x>1
  8. g(x)=[[x]]+2
Answer

1.

Figure 2.E.20

3.

8126b834b4a7116034e9cde9f10587d3.png
Figure 2.E.21

5.

1aeaf7ed1e19a125c8a10289761f5daf.png
Figure 2.E.22

7.

157ef3dace0a9d8589dde4e97adb6d61.png
Figure 2.E.23

Exercise 2.E.12

Evaluate.

1. f(x)={5x2 if x<6x2 if x6

Find f(10),f(6), and f(0).

2. h(x)={25x if x0x3 if x>0

Find h(1),h(0), and h(12).

3. g(x)={5 if x<4x9 if 4x<0x if x0

Find g(10),g(0) and g(8).

4. q(x)={1x if x<10 if 1x1x if x>1

Find q(53),q(1) and q(16).

Answer

1. f(10)=52,f(6)=36,f(0)=0

3. g(10)=5,g(4)=13,g(8)=22

Exercise 2.E.13

Sketch the graph of the given function.

  1. f(x)=(x+5)210
  2. g(x)=x6+9
  3. p(x)=x9
  4. h(x)=x3+5
  5. f(x)=|x20|40
  6. f(x)=1x3
  7. h(x)=1x+36
  8. g(x)=3x4+2
  9. f(x)={(x+4)2 if x<2x+2 if x2
  10. g(x)={2 if x<6|x8|4 if x6
  11. g(x)=|x+4|8
  12. h(x)=x2+16
  13. f(x)=x2
  14. r(x)=1x+2
  15. g(x)=2|x+10|+8
  16. f(x)=5x+1
  17. f(x)=14x2+1
  18. h(x)=13(x1)3+2
Answer

1.

753dba621814fb7ceadd5f8d45c6ebfe.png
Figure 2.E.24

3.

0774477bb3f62cef6695f27c1bd9e4f1.png
Figure 2.E.25

5.

7f5f296c19b744b2ac9b5fe6db69adae.png
Figure 2.E.26

7.

8a68fc68a1493ed407b6ef1414363bb4.png
Figure 2.E.27

9.

939eb07384c47f05f139f5f4d9cae32b.png
Figure 2.E.28

11.

20faf0bd1a27747a4c6bd7a401247118.png
Figure 2.E.29

13.

3d4eecfb44a58ffc89192d1d20863c00.png
Figure 2.E.30

15.

d72d7559a0d3001599b6c71f3de46195.png
Figure 2.E.31

17.

cde618ac3991c98dcbc543463ad84e6c.png
Figure 2.E.32

Exercise 2.E.14

Write an equation that represents the function whose graph is given.

1.

66ce7db45a05d568a1bb90fd8cf7256b.png
Figure 2.E.33

2.

c36e5b06b4611de9c2ca9f6296706d2d.png
Figure 2.E.34

3.

bcc2ebd201dda91ed0936fd68c501d5e.png
Figure 2.E.35

4.

dc3b6c5f2375ec353819b67f12bf3e49.png
Figure 2.E.36

5.

e75628f49c69238d59de71f6afb9e124.png
Figure 2.E.37

6.

a05ada75ba35cfe8d18cc9a72a58e1b2.png
Figure 2.E.38

7.

1327ea37dbf140f3feeb1b3f6a6ac27d.png
Figure 2.E.39

8.

bfe51dc10f3de0513b28f3872f048983.png
Figure 2.E.40
Answer

1. f(x)=(x4)26

3. f(x)=x2+4

5. f(x)=x32

7. f(x)=10

Exercise 2.E.15

Solve.

  1. |5x4|=14
  2. |43x|=4
  3. 95|x4|=4
  4. 6+2|x+10|=12
  5. |3x6|+5=5
  6. 0.2|x1.8|=4.6
  7. 23|2x12|+13=2
  8. 14|x+52|2=18
  9. |3x9|=|4x+3|
  10. |9x7|=|3+8x|
Answer

1. 2,185

3. 3,5

5. 2

7. 1,32

9. 12,67

Exercise 2.E.16

Solve. Graph the solutions on a number line and give the corresponding interval notation.

  1. |2x+3|<1
  2. |10x15|25
  3. |6x1|11
  4. |x12|>7
  5. 64|x12|2
  6. 5|x+6|4
  7. |3x+1|+74
  8. 2|x3|+6>4
  9. 5|13x12|>56
  10. 6.43.2|x+1.6|>0
Answer

1. (2,1);

b3f6d59d971ad4bac7ca7826cbb5083e.png
Figure 2.E.41

3. [53,2];

92967f82f93a839c4bd7b8e1bec7d3ed.png
Figure 2.E.42

5. (,12][32,);

2a23f9d520943d5e865a523ec118060c.png
Figure 2.E.43

7. ;

2d80488891eff5ced515c44f960d3f60.png
Figure 2.E.44

9. (,1)(2,);

027a26286f2e841b3bfae305399483e6.png
Figure 2.E.45

Exercise 2.E.17

Is the ordered pair a solution to the given inequality?

  1. 9x2y<1;(1,3);
  2. 4x+13y>0;(1,12);
  3. 34xy12;(12,14)
  4. xy6;(1,7)
  5. yx23;(3,5)
  6. y>|x6|+10;(4,12)
  7. y<(x1)3+7;(1,0)
  8. yx+4;(3,4)
Answer

1. Yes

3. Yes

5. Yes

7. No

Exercise 2.E.18

Graph the solution set.

  1. x+y<6
  2. 2x3y9
  3. 3xy6
  4. y+4>0
  5. x60
  6. 13x+16y>12
  7. y>(x2)23
  8. y(x+6)2+3
  9. y<|x|+9
  10. y>|x12|+3
  11. yx3+8
  12. y>(x2)3
Answer

1.

af1f0451fd8e54011ec07c912777349c.png
Figure 2.E.46

3.

26f8bef8a2d2937cc5c8a861a4c3e4f4.png
Figure 2.E.47

5.

3762b2bb2d3fbb46fb0675fa7b295f39.png
Figure 2.E.48

7.

cbdc0a8e8ab3e5383e9f2086c7645aa9.png
Figure 2.E.49

9.

935983cbc68a099e6aaeac6ddbdb523b.png
Figure 2.E.50

11.

e03b05d8be0eb4149a5d6a66c6a9d841.png
Figure 2.E.51

Sample Exam

Exercise 2.E.19

1. Determine whether or not the following graph represents a function or not. Explain.

5df87bd856edb7eb1091a5a679a60acd.png
Figure 2.E.52

2. Determine the domain and range of the following function.

ea97ae079543b40842eb21a0c11fcf99.png
Figure 2.E.53

3. Given g(x)=x25x+1, find g(1),g(0), and g(x+h).

4. Given the graph of a function f:

96f679445524a363ef45a4a4cfe44ef9.png
Figure 2.E.54

(a) Find f(6),f(0), and f(2)

(b) Find x where f(x)=2

5. Graph f(x)=52x+7 and label the x-intercept.

6. Find a linear function passing through (12,1) and (2,2).

7. Find the equation of the line parallel to 2x6y=3 and passing through (1,2).

8. Find the equation of the line perpendicular to 3x4y=12 and passing through (6,1).

9. The annual revenue of a new web-services company in dollars is given by R(n)=125n, where n represents the number of users the company has registered. The annual maintenance cost of the company’s registered user base in dollars is given by the formula C(n)=85n+22,480 where n represents the users.

(a) Write a function that models the annual profit based on the number of registered users.

(b) Determine the number of registered users needed to break even.

10. A particular search engine assigns a ranking to a webpage based on the number of links that direct users to the webpage. If no links are found, the webpage is assigned a ranking of 1. If 40 links are found directing users to the webpage, the search engine assigns a page ranking of 5.

(a) Find a linear function that gives the webpage ranking based on the number of links that direct users to it.

(b) How many links will be needed to obtain a page ranking of 7?

Answer

1. The graph is not a function; it fails the vertical line test.

3. g(1)=7,g(0)=1, and g(x+h)=x2+2xh+h25x5h+1

5.

08105502aa72e7f7441fa4bffdf2de27.png
Figure 2.E.55

7. y=13x53

9. (a) P(n)=40n22,480 (b) 562 users

Exercise 2.E.20

Use the transformations to sketch the graph of the following functions and state the domain and range.

  1. g(x)=|x+4|5
  2. h(x)=x4+1
  3. r(x)=(x+3)3
  4. Given the graph, determine the function definition and its domain and range:
c9bfd019368875763bc0943385a759b3.png
Figure 2.E.56

5. Sketch the graph: h(x)={x if x<11x if x1

6. Sketch the graph: g(x)=13x2+9

Answer

1. Domain: (,); range: [5,)

f1461eafa1ae8f616acbfd9c3a682662.png
Figure 2.E.57

3. Domain: (,); range: (,)

4d6cfc71d08accb3b70b8025b52f6a90.png
Figure 2.E.58

5.

Figure 2.E.59

Exercise 2.E.21

Solve.

  1. |2x1|+2=7
  2. 105|2x3|=0
  3. |7x+4|=|9x1|
Answer

1. 2,3

3. 316,52

Exercise 2.E.22

Solve and graph the solution set.

  1. |2x4|5<7
  2. 6+|3x5|13
  3. 53|x4|10
  4. 3|7x1|+52
Answer

1. (,23][4,);

e99b75080a103ebdcd75197820edbe45.png
Figure 2.E.60

3.

4b99851d0ca897836aa4148313e50106.png
Figure 2.E.61

Exercise 2.E.23

Graph the solution set.

  1. 12x23y4
  2. y>(x2)2+4
Answer

1.

Figure 2.E.62

This page titled 2.E: Graphing Functions and Inequalities (Exercises) is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Anonymous via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?