Skip to main content
Mathematics LibreTexts

1.23: Linear Inequalities

  • Page ID
    47196
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In this section we solve linear inequalities.

    Consider the inequality \(2 x-1>2\). To solve this means to find all values of \(x\) that satisfy the inequality (so that when you plug in those values for \(x\) you get a true statement). For example, since \(2 \cdot 5-1=9>2, x=5\) is a solution and since \(2 \cdot 1-1=1 \not>2, x=1\) is not a solution.

    We can solve an inequality in much the same way as we solve an equality with one important exception:

    Multiplication or division by a negative number reverses the direction of the inequality.

    For example \(-3 x>9 \Longleftrightarrow \frac{-3 x}{-3}<\frac{9}{-3} \Longleftrightarrow x<-3\). We see that
    \(x=-10\) satisfies all of these inequalities and \(x=3\) satisfies none of them. We can graph the solution on the number line:

    clipboard_efcf6d3b0ad32a277fc29febc7bb7b300.png

    But \(3 x>9 \Longleftrightarrow \frac{3 x}{3}>\frac{9}{3} \Longleftrightarrow x>3\).

    clipboard_e9e89fc9579852b60b5f6e6178e374fb3.png

    For instance, check that \(x=5\) (which is greater than 3 ) satisfies the inequality.

    Example 21.1

    Solve the given inequality and represent the solution on the number line:

    a) \(5 x>10 \Longleftrightarrow x>\frac{10}{5} \Longleftrightarrow x>2\)

    clipboard_e69bd65626bef756f24bbc854e38b6c09.png

    b) \(-10 x \leq-5 \Longleftrightarrow x \geq \frac{-5}{-10} \Longleftrightarrow x \geq \frac{1}{2}\)

    clipboard_e7ff97fb7d1a502850f6e7b0287250818.png

    c) \(-x>-2 \Longleftrightarrow x<\frac{-2}{-1} \Longleftrightarrow x<2\)

    clipboard_e7f49abafa8b8e3e3af1aedd9c203fd09.png

    d) \(2-x \geq 2 x-5 \Longleftrightarrow 7-x \geq 2 x \Longleftrightarrow 7 \geq 3 x \Longleftrightarrow \frac{7}{3} \geq x\) (or \(\left.x \leq \frac{7}{3}\right)\)

    clipboard_e21cf36535d9db45e14f0bb3ff0501b95.png

    e) \(2-3 x \geq-2 x+7 \Longleftrightarrow-5-3 x \geq-2 x \Longleftrightarrow-5 \geq x\) (or \(x \leq-5)\)

    clipboard_ed53e5a20ed016342e96b6f880306a6dd.png

    f) \(3(x-2)+5 \leq 5-2(x+1) \Longleftrightarrow 3 x-6+5 \leq 5-2 x-2 \Longleftrightarrow 3 x-1 \leq 3-2 x \Longleftrightarrow 3 x+2 x \leq 3+1 \Longleftrightarrow 5 x \leq 4 \Longleftrightarrow x \leq \frac{4}{5}\)

    clipboard_e29e83f963ad9cd4628ed09fdf1862a6b.png

    Note: There is more than one way to do a problem. For example:

    \(-3 x-2<1 \Longleftrightarrow-3 x<2+1 \Longleftrightarrow-3 x<3 \Longleftrightarrow \frac{-3 x}{-3}>\frac{3}{-3} \Longleftrightarrow x>-1 \)

    or,

    \(-3 x-2<1 \Longleftrightarrow-2<1+3 x \Longleftrightarrow-2-1<3 x \Longleftrightarrow-3<3 x \Longleftrightarrow-1<x(\) which is the same as \(x>-1)\)

    clipboard_e4daab39e5a4895d73f78c497943d4913.png

    Exit Problem

    Solve the inequality and show the graph of the solution:

    \[7 x+4 \leq 2 x-6\nonumber\]


    1.23: Linear Inequalities is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?