Skip to main content

# 1.8: Percent

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Overview

• The Meaning of Percent
• Converting A Fraction To A Percent
• Converting A Decimal To A Percent
• Converting A Percent To A Decimal

## The Meaning of Percent

The word percent comes from the Latin word “per centum,” “per” meaning “for each,” and “centum” meaning “hundred.”

Percent (%)

##### Definition: Percent

Percent means “for each hundred” or “for every hundred.” The symbol % is used to represent the word percent.

Thus, $$1\%$$ = $$\dfrac{1}{100}$$ or $$1\%$$ = $$0.01$$

## Converting A Fraction To A Percent

We can see how a fraction can be converted to a percent by analyzing the method that $$\dfrac{3}{5}$$ is converted to a percent. In order to convert $$\dfrac{3}{5}$$ to a percent, we need to introduce $$\dfrac{1}{100}$$ (since percent means for each hundred).

##### Example $$\PageIndex{1}$$

\begin{aligned} \dfrac{3}{5} &=\dfrac{3}{5} \cdot \dfrac{100}{100} & \text { Multiply the fraction by } 1 . \\ &=\dfrac{3}{5} \cdot 100 \cdot \dfrac{1}{100} & \text { Since } \dfrac{100}{100}=100 \cdot \dfrac{1}{100} \\ &=\dfrac{300}{5} \cdot \dfrac{1}{100} & \text { Divide } 300 \text { by } 5 \\&=60 \cdot \dfrac{1}{100} & \text{ Multiply the fractions. } \\&=60 \% & \text{ Replace } \dfrac{1}{100} \text{ with the % symbol.} \end{aligned}

##### Fraction to Percent

To convert a fraction to a percent, multiply the fraction by $$1$$ in the form $$100 \cdot \dfrac{1}{100}$$, then replace $$\dfrac{1}{100}$$ with the $$\%$$ symbol.

## Sample Set A

Convert each fraction to a percent.

##### Example $$\PageIndex{2}$$

\begin{aligned} \dfrac{1}{4} &=\dfrac{1}{4} \cdot 100 \cdot \dfrac{1}{100} \\ &=\dfrac{100}{4} \cdot \dfrac{1}{100} \\ &=25 \cdot \dfrac{1}{100} \\ &=25 \% \end{aligned}

##### Example $$\PageIndex{2}$$

\begin{aligned} \dfrac{8}{5} &=\dfrac{8}{5} \cdot 100 \cdot \dfrac{1}{100} \\ &=\dfrac{800}{5} \cdot \dfrac{1}{100} \\ &=160 \% \end{aligned}

##### Example $$\PageIndex{2}$$

\begin{aligned} \dfrac{4}{9} &=\dfrac{4}{9} \cdot 100 \cdot \dfrac{1}{100} \\ &=\dfrac{400}{9} \cdot \dfrac{1}{100} \\ &=(44.4 \ldots) \cdot \dfrac{1}{100} \\ &=(44 . \overline{4}) \cdot \dfrac{1}{100} \\ &=44 . \overline{4} \% \end{aligned}

## Converting A Decimal To A Percent

We can see how a decimal is converted to a percent by analyzing the method that $$0.75$$ is converted to a percent. We need to introduce $$\dfrac{1}{100}$$.

##### Example $$\PageIndex{3}$$

\begin{aligned} &0.75=0.75 \cdot 100 \cdot \dfrac{1}{100} \quad \text { Multiply the decimal by } 1\\ &\begin{array}{l} =75 \cdot \dfrac{1}{100} \\ =75 \% \end{array} \quad \quad \text { Replace } \dfrac{1}{100} \text { with the } \% \text { symbol. } \end{aligned}

##### Decimal to Percent

To convert a fraction to a percent, multiply the decimal by 1 in the form $$100 \cdot \dfrac{1}{100}$$, then replace $$\dfrac{1}{100}$$ with the $$\%$$ symbol. This amounts to moving the decimal point 2 places to the right.

## Sample Set B

Convert each decimal to a percent.

##### Example $$\PageIndex{4}$$

\begin{aligned} 0.62 &=0.62 \cdot 100 \cdot \dfrac{1}{100} \\ &=62 \cdot \dfrac{1}{100} \\ &=62 \% \end{aligned}

Notice that the decimal point in the original number has been moved to the right 2 places.

##### Example $$\PageIndex{5}$$

\begin{aligned} 8.4 &=8.4 \cdot 100 \cdot \dfrac{1}{100} \\ &=840 \cdot \dfrac{1}{100} \\ &=840 \% \end{aligned}

Notice that the decimal point in the original number has been moved to the right 2 places.

##### Example $$\PageIndex{6}$$

\begin{aligned} 0.47623 &=0.47623 \cdot 100 \cdot \dfrac{1}{100} \\ &=47.623 \cdot \dfrac{1}{100} \\ &=47.623 \% \end{aligned}

Notice that the decimal point in the original number has been moved to the right 2 places.

## Converting A Percent To A Decimal

We can see how a percent is converted to a decimal by analyzing the method that 12% is converted to a decimal. We need to introduce $$\dfrac{1}{100}$$.

##### Example $$\PageIndex{7}$$

\begin{aligned} &12 \%=12 \cdot \dfrac{1}{100} \quad \text { Replace } \% \text { with } \dfrac{1}{100}\\ &\begin{array}{ll} =\dfrac{12}{100} & \text { Multiply the fractions. } \\ =0.12 & \text { Divide } 12 \text { by } 100 . \end{array} \end{aligned}

##### Percent to Decimal

To convert a percent to a decimal, replace the % symbol with $$\dfrac{1}{100}$$, then divide the number by 100. This amounts to moving the decimal point 2 places to the left.

## Sample Set C

Convert each percent to a decimal.

##### Example $$\PageIndex{8}$$

\begin{aligned} 48 \% &=48 \cdot \dfrac{1}{100} \\ &=\dfrac{48}{100} \\ &=0.48 \end{aligned}

Notice that the decimal point in the original number has been moved to the left 2 places.

##### Example $$\PageIndex{9}$$

\begin{aligned} 659 \% &=659 \cdot \dfrac{1}{100} \\ &=\dfrac{659}{100} \\ &=6.59 \end{aligned}

Notice that the decimal point in the original number has been moved to the left 2 places.

##### Example $$\PageIndex{10}$$

\begin{aligned} 0.4113 \% &=0.4113 \cdot \dfrac{1}{100} \\ &=\dfrac{0.4113}{100} \\ &=0.004113 \end{aligned}

Notice that the decimal point in the original number has been moved to the left 2 places.

## Exercises

For the following problems, convert each fraction to a percent.

##### Exercise $$\PageIndex{1}$$

$$\dfrac{2}{5}$$

Answer

40%

##### Exercise $$\PageIndex{2}$$

$$\dfrac{7}{8}$$

##### Exercise $$\PageIndex{3}$$

$$\dfrac{1}{8}$$

Answer

12.5%

##### Exercise $$\PageIndex{4}$$

$$\dfrac{5}{16}$$

##### Exercise $$\PageIndex{5}$$

$$15 \div 22$$

Answer

66.18%

##### Exercise $$\PageIndex{6}$$

$$\dfrac{2}{11}$$

##### Exercise $$\PageIndex{7}$$

$$\dfrac{2}{9}$$

Answer

22.22%

##### Exercise $$\PageIndex{8}$$

$$\dfrac{16}{45}$$

##### Exercise $$\PageIndex{9}$$

$$\dfrac{27}{55}$$

Answer

49.09%

##### Exercise $$\PageIndex{10}$$

$$\dfrac{7}{27}$$

15

Answer

1500%

##### Exercise $$\PageIndex{12}$$

8

For the following problems, convert each decimal to a percent

0.36

Answer

36%

0.42

0.446

Answer

44.6%

0.1298

4.25

Answer

425%

5.785

86.98

Answer

8698%

21.26

14

Answer

1400%

##### Exercise $$\PageIndex{22}$$

12

For the following problems, convert each percent to a decimal.

35%

Answer

0.35

76%

18.6%

Answer

0.186

67.2%

9.0145%

Answer

0.090145

3.00156%

0.00005%

Answer

0.0000005

##### Exercise $$\PageIndex{30}$$

0.00034%

This page titled 1.8: Percent is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Denny Burzynski & Wade Ellis, Jr. (OpenStax CNX) .

• Was this article helpful?