8.4: Multiplying and Dividing Rational Expressions
( \newcommand{\kernel}{\mathrm{null}\,}\)
Multiplication Of Rational Expressions
Rational expressions are multiplied together in much the same way that arithmetic fractions are multiplied together. To multiply rational numbers, we do the following:
- Method for Multiplying Rational Numbers
- Reduce each fraction to lowest terms.
- Multiply the numerators together.
- Multiply the denominators together.
Rational expressions are multiplied together using exactly the same three steps. Since rational expressions tend to be longer than arithmetic fractions, we can simplify the multiplication process by adding one more step.
- Method for Multiplying Rational Expressions
- Factor all numerators and denominators.
- Reduce to lowest terms first by dividing out all common factors. (It is perfectly legitimate to cancel the numerator of one fraction with the denominator of another.)
- Multiply numerators together.
- Multiply denominators. It is often convenient, but not necessary, to leave denominators in factored form.
Sample Set A
Perform the following multiplications.
34⋅12=3⋅14⋅2=38
89⋅16=489⋅163=4⋅19⋅3=427
3x5y⋅712y=13x5y⋅7124y=x⋅75y⋅4y=7x20y2
x+4x−2⋅x+7x+4 Divide out the common factor x+4.
x+4x−2⋅x+7x+4 Multiply the numerators and denominators together.
x+7x−2
x2+x−6x2−4x+3⋅x2−2x−3x2+4x−12. Factor.
(x+3)(x−2)(x−3)(x−1)⋅(x−3)(x+1)(x+6)(x−2). Divide out the common factors x−2 and x−3.
(x+3)(x−2)(x−3)(x−1)⋅(x−3)(x+1)(x+6)(x−2) Multiply.
(x+3)(x+1)(x−1)(x+6) or (x62+4x+3(x−1)(x+6) or (x2+4x+3x2+5x−6
Each of these three forms is an acceptable form of the same answer.
2x+66x−16⋅x2−4x2−x−12. Factor.
2(x+3)8(x−2)⋅(x+2)(x−2)(x−4)(x+3). Divide out the common factors 2,x+3 and x−2.
2(x+3)8(x−2)⋅(x+2)(x−2)(x+3)(x−4) Multiply.
x+24(x−4) or x+24x−16
Both these forms are acceptable forms of the same answer.
3x2⋅x+7x−5. Rewrite 3x2 as 3x21.
3x21⋅x+7x−5. Multiply.
3x2(x+7)x−5
(x−3)⋅4x−9x2−6x+9
(x−3)1⋅4x−9(x−3)(x−3)
4x−9x−3
−x2−3x−2x2+8x+15⋅4x+20x2+2x. Factor −1 from the first numerator.
−(x2+3x+2)x2+8x+15⋅4x+20x2+2. Factor.
−(x+1)(x+2)(x+3)(x+5)⋅4(x+5)x(x+2) Multiply.
−4(x+1)x(x+3)=−4x−1x(x+3) or −4x−1x2+3x
Practice Set A
Perform each multiplication.
53⋅67
- Answer
-
107
a3b2c2⋅c5a5
- Answer
-
c3a2b2
y−1y2+1⋅y+1y2−1
- Answer
-
1y2+1
x2−x−12x2+7x+6⋅x2−4x−5x2−9x+20
- Answer
-
x+3x+6
x2+6x+8x2−6x+8⋅x2−2x−8x2+2x−8
- Answer
-
(x+2)2(x−2)2
Division Of Rational Expressions
To divide one rational expression by another, we first invert the divisor then multiply the two expressions. Symbolically, if we let P,Q,R, and S represent polynomials, we can write
PQ÷RS=PQ⋅SR=P⋅SQ⋅R
Sample Set B
Perform the following divisions.
6x25a÷2x10a3 Invert the divisor and multiply
36x⧸2⧸5a̸⋅210a23⧸2x̸=3x⋅2a21=6a2x
x2+3x−102x−2÷x2+9x+20x2+3x−4 Invert and Multiply.
x2+3x−102x−2⋅x2+3x−4x2+9x+20. Factor
(x+5)(x−2)2(x−2)⋅(x+4)(x−1)(x+5)(x+4)
x−22
(4x+7)÷12x+21x−2. Write 4x+7 as 4x+71.
4x+71÷12x+21x−2 Invert and multiply.
4x+71÷x−212x+21. Factor.
4x+71⋅x−23(4x+7)=x−23
Practice Set B
Perform each division.
8m2n3a5b2÷2m15a7b2
- Answer
-
20a2mn
x2−4x2+x−6÷x2+x−2x2+4x+3
- Answer
-
x+1x−1
6a2+17a+123a+2÷(2a+3)
- Answer
-
3a+43a+2
Exercises
For the following problems, perform the multiplication and divisions.
4a35b⋅3b2a
- Answer
-
6a25
9x44y3⋅10yx2
ab⋅ba
- Answer
-
1
2x5y⋅5y2x
12a37⋅2815a
- Answer
-
16a25
39m416⋅413m2
18x67⋅14x2
- Answer
-
9x414
34a621⋅4217a5
16x6y315x2⋅25x4y
- Answer
-
20x5y23
27a7b439b⋅13a4b216a5
10x2y37y5⋅49y15x6
- Answer
-
143x4y
22m3n411m6n⋅33mn4mn3
−10p2q7a3b2⋅21a5b32p
- Answer
-
−15a2bpq
−25m4n314r3s3⋅21rs410mn
9a÷3a2
- Answer
-
3a
10b2÷4b3
21a45b2÷14a15b3
- Answer
-
9a3b2
42x516y4÷21x48y3
39x2y255p2÷13x3y15p6
- Answer
-
9p4y11x
14mn325n6÷6a215x2
- Answer
-
−6b3xy4
24p3q9mn3÷10pq−21n2
x+8x+1⋅x+2x+8
- Answer
-
x+2x+1
x+10x−4⋅x−4x−1
2x+5x+8⋅x+8x−2
- Answer
-
2x+5x−2
y+22y−1⋅2y−1y−2
x−5x−1÷x−54
- Answer
-
4x−1
xx−4÷2x5x+1
a+2ba−1÷4a+8b3a−3
- Answer
-
34
6m+2m−1÷4m−4m−1
x3⋅4abx
- Answer
-
4abx2
y4⋅3x2y2
2a5÷6a24b
- Answer
-
4a3b3
16x2y3÷10xy3
21m4n2÷3mn27n
- Answer
-
49m3n
(x+8)⋅x+2x+8
(x−2)⋅x−1x−2
- Answer
-
x−1
(a−6)3⋅(a+2)2a−6
(b+1)4⋅(b−7)3b+1
- Answer
-
(b+1)3(b−7)3
(b2+2)3⋅b−3(b2+2)2
(x3−7)4⋅x2−1(x3−7)2
- Answer
-
(x3−7)2(x+1)(x−1)
(x−5)÷x−5x−2
(y−2)÷y−2y−1
- Answer
-
(y−1)
(y+6)3÷(y+6)2y−6
(a−2b)4÷(a−2b)2a+b
- Answer
-
(a−2b)2(a+b)
x2+3x+2x2−4x+3⋅x2−2x−32x+2
6x−42x2−2x−3⋅x2−1x−7
- Answer
-
6(x−1)(x−3)
3a+3ba2−4a−5÷9a+9ba2−3a−10
a2−4a−12a2−9÷a2−5a−6a2+6a+9
- Answer
-
(a+2)(a+3)(a−3)(a+1)
b2−5b+6b2−b−2⋅b2−2b−3b2−9b+20
m2−4m+3m2+5m−6⋅m2+4m−12m2−5m+6
- Answer
-
1
r2+7r+10r2−2r−8÷r2+6r+5r2−3r−4
2a2+7a+33a2−5a−2⋅a2−5a+6a2+2a−3
- Answer
-
(2a+1)(a−6)(a+1)(3a+1)(a−1)(a−2)
6x2+x−22x2+7x−4⋅x2+2x−123x2−4x−4
x3y−x2y2x2y−y2⋅x2−yx−xy
- Answer
-
x(x−y)1−y
4a3b−4a2b215a−10⋅3a−24ab−2b2
x+3x−4⋅x−4x+1⋅x−2x+3
- Answer
-
x−2x+1
x−7x+8⋅x+1x−7⋅x+8x−2
2a−ba+b⋅a+3ba−5b⋅a−5b2a−b
- Answer
-
a+3ba+b
3a(a+1)2a−5⋅6(a−5)25a+5⋅15a+304a−20
−3a24b⋅−8b315a
- Answer
-
2ab25
−6x35y2⋅20y−2x
−8x2y3−5x÷4−15xy
- Answer
-
−6x2y4
−4a33b÷2a6b2
−3a−32a+2⋅a2−3a+2a2−5a−6
- Answer
-
−3(a−2)(a−1)2(a−6)(a+1)
x2−x−2x2−3x−4⋅−x2+2x+3−4x−8
−5x−10x2−4x+3⋅x2+4x+1x2+x−2
- Answer
-
−5(x2+4x+1)(x−3)(x−1)2
−a2−2a+15−6a−12÷a2−2a−8−2a−10
−b2−5b+143b−6÷−b2−9b−14−b+8
- Answer
-
−(b−8)3(b+2)
3a+64a−24⋅6−a3a+15
4x+12x−7⋅7−x2x−2
- Answer
-
−2(x+3)(x+1)
−2x−2b2+b−6⋅−b+2b+5
3x2−6x−92x2−6x−4÷3x2−5x−26x2−7x−3
- Answer
-
3(x−3)(x+1)(2x−3)2(x2−3x−2)(x−2)
−2b2−2b+48b2−28b−16÷b2−2b+12b2−5b−3
x2+4x+3x2+5x+4÷(x+3)
- Answer
-
(x+4)(x−1)(x+3)(x2−4x−3)
x2−3x+2x2−4x+3÷(x−3)
3x2−21x+18x2+5x+6÷(x+2)
- Answer
-
3(x−6)(x−1)(x+2)2(x+3)
Exercises For Review
If a<0, then |a|=.
Classify the polynomial 4xy+2y as a monomial, binomial, or trinomial. State its degree and write the numerical coefficient of each term.
- Answer
-
binomial; 2; 4, 2
Find the product: y2(2y−1)(2y+1)
Translate the sentence “four less than twice some number is two more than the number” into an equation.
- Answer
-
2x−4=x+2
Reduce the fraction x2−4x+4x2−4