8.13: Proficiency Exam
- Page ID
- 60055
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Proficiency Exam
Find the domain of \(\dfrac{5a + 1}{a^2 - 5a - 24}\)
- Answer
-
\(a≠−3,8\)
For the following problems, fill in the missing term.
\(-\dfrac{3}{x+4} = \dfrac{?}{x + 4}\)
- Answer
-
\(−3\)
\(\dfrac{2x + 5}{-x + 1} = \dfrac{?}{x - 1}\)
- Answer
-
\(−2x−5\)
For the following problems, reduce to lowest terms.
\(\dfrac{30x^6y^3(x-3)^2(x+5)^2}{6xy^3(x+5)}\)
- Answer
-
\(5x^5(x-3)^2(x+5)\)
\(\dfrac{x^2 + 10x + 24}{x^2 + x - 30}\)
- Answer
-
\(\dfrac{x + 4}{x - 5}\)
\(\dfrac{8x^2 + 2x - 3}{4x^2 + 12x - 7}\)
- Answer
-
\(\dfrac{4x + 3}{2x + 7}\)
Replace \(N\) with the proper quantity.
\(\dfrac{x+2}{x-1} = \dfrac{N}{x^2 - 4x + 3}\)
- Answer
-
\((x−3)(x+2)\)
Assume that \(a^2 + a - 6, a^2 - a - 12\), and \(a^2 - 2a - 8\) are denominators of rational expressions. Find the LCD.
- Answer
-
\((a+2)(a−2)(a+3)(a−4)\)
For the following problems, perform the operations.
\(\dfrac{3a + 4}{a + 6} - \dfrac{2a - 1}{a + 6}\)
- Answer
-
\(\dfrac{a+5}{a+6}\)
\(\dfrac{18x^3y}{5a^2} \cdot \dfrac{15a^3b}{6x^2y}\)
- Answer
-
\(9abx\)
\(\dfrac{y^2-y-12}{y^2 + 3y + 2} \cdot \dfrac{y^2 + 10y + 16}{y^2 - 7y + 12}\)
- Answer
-
\(\dfrac{(y+3)(y+8)}{(y+1)(y-3)}\)
\(\dfrac{y-2}{y^2 - 11y + 24} + \dfrac{y + 4}{y^2 + 3y - 18}\)
- Answer
-
\(\dfrac{2(y^2 - 22)}{(y-8)(y-3)(y+6)}\)
\(\dfrac{9}{2x + 7} + \dfrac{4}{6x - 1}\)
- Answer
-
\(\dfrac{62x + 19}{(2x + 7)(6x - 1)}\)
\(\dfrac{16x^5(x^2 - 1)}{9x - 9} \div \dfrac{2x^2 - 2x}{3}\)
- Answer
-
\(\dfrac{8x^4(x + 1)}{3(x-1)}\)
\((m + 3) \div \dfrac{2m + 6}{5m + 1}\)
- Answer
-
\(\dfrac{5m + 1}{2}\)
\(\dfrac{3y + 10}{8y^2 + 10y - 3} - \dfrac{5y - 1}{4y^2 + 23y - 6}\)
- Answer
-
\(\dfrac{-7y^2 + 15y + 63}{(4y-1)(2y + 3)(y + 6)}\)
Solve \(\dfrac{1}{x+3} + \dfrac{3}{x-3} = \dfrac{x}{x^2 - 9}\)
- Answer
-
\(x = -2\)
Solve \(\dfrac{12}{m-4} + 5 = \dfrac{3m}{m-4}\).
- Answer
-
No solution; \(m=4\) is excluded.
When the same number is added to both the numerator and denominator of the fraction \(\dfrac{5}{3}\), the result is \(\dfrac{6}{5}\). What is the number that is added?
- Answer
-
\(7\)
Person A, working alone, can complete a job in 20 hours. Person B, working alone, can complete the same job in 30 hours. How long will it take both people, working together, to complete the job?
- Answer
-
12 hours
The width of a rectangle is 1 foot longer than one-half the length. Find the dimensions (lengh and width) of the rectangle if the perimeter is 44 feet.
- Answer
-
8 ft by 14 ft
Simplify the complex fraction \(\dfrac{4 - \frac{3}{x}}{4 + \frac{3}{x}}\)
- Answer
-
\(\dfrac{4x - 3}{4x + 3}\)
Simplify the complex fraction \(\dfrac{1-\frac{5}{x}-\frac{6}{x^{2}}}{1+\frac{6}{x}+\frac{5}{x^{2}}}\)
- Answer
-
\(\dfrac{x-6}{x + 5}\)
Perform the division: \(\dfrac{x^3 + 10x^2 + 21x - 18}{x + 6}\)
- Answer
-
\(x^2 + 4x - 3\)
Perform the division: \(\dfrac{2x^3 + 5x - 1}{x - 2}\)
- Answer
-
\(2x^2 + 4x + 13 + \dfrac{25}{x - 2}\)