Skip to main content
Mathematics LibreTexts

8.13: Proficiency Exam

  • Page ID
    60055
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Proficiency Exam

    Exercise \(\PageIndex{1}\)

    Find the domain of \(\dfrac{5a + 1}{a^2 - 5a - 24}\)

    Answer

    \(a≠−3,8\)

    For the following problems, fill in the missing term.

    Exercise \(\PageIndex{2}\)

    \(-\dfrac{3}{x+4} = \dfrac{?}{x + 4}\)

    Answer

    \(−3\)

    Exercise \(\PageIndex{3}\)

    \(\dfrac{2x + 5}{-x + 1} = \dfrac{?}{x - 1}\)

    Answer

    \(−2x−5\)

    For the following problems, reduce to lowest terms.

    Exercise \(\PageIndex{4}\)

    \(\dfrac{30x^6y^3(x-3)^2(x+5)^2}{6xy^3(x+5)}\)

    Answer

    \(5x^5(x-3)^2(x+5)\)

    Exercise \(\PageIndex{5}\)

    \(\dfrac{x^2 + 10x + 24}{x^2 + x - 30}\)

    Answer

    \(\dfrac{x + 4}{x - 5}\)

    Exercise \(\PageIndex{6}\)

    \(\dfrac{8x^2 + 2x - 3}{4x^2 + 12x - 7}\)

    Answer

    \(\dfrac{4x + 3}{2x + 7}\)

    Replace \(N\) with the proper quantity.

    Exercise \(\PageIndex{7}\)

    \(\dfrac{x+2}{x-1} = \dfrac{N}{x^2 - 4x + 3}\)

    Answer

    \((x−3)(x+2)\)

    Exercise \(\PageIndex{8}\)

    Assume that \(a^2 + a - 6, a^2 - a - 12\), and \(a^2 - 2a - 8\) are denominators of rational expressions. Find the LCD.

    Answer

    \((a+2)(a−2)(a+3)(a−4)\)

    For the following problems, perform the operations.

    Exercise \(\PageIndex{9}\)

    \(\dfrac{3a + 4}{a + 6} - \dfrac{2a - 1}{a + 6}\)

    Answer

    \(\dfrac{a+5}{a+6}\)

    Exercise \(\PageIndex{10}\)

    \(\dfrac{18x^3y}{5a^2} \cdot \dfrac{15a^3b}{6x^2y}\)

    Answer

    \(9abx\)

    Exercise \(\PageIndex{11}\)

    \(\dfrac{y^2-y-12}{y^2 + 3y + 2} \cdot \dfrac{y^2 + 10y + 16}{y^2 - 7y + 12}\)

    Answer

    \(\dfrac{(y+3)(y+8)}{(y+1)(y-3)}\)

    Exercise \(\PageIndex{12}\)

    \(\dfrac{y-2}{y^2 - 11y + 24} + \dfrac{y + 4}{y^2 + 3y - 18}\)

    Answer

    \(\dfrac{2(y^2 - 22)}{(y-8)(y-3)(y+6)}\)

    Exercise \(\PageIndex{13}\)

    \(\dfrac{9}{2x + 7} + \dfrac{4}{6x - 1}\)

    Answer

    \(\dfrac{62x + 19}{(2x + 7)(6x - 1)}\)

    Exercise \(\PageIndex{14}\)

    \(\dfrac{16x^5(x^2 - 1)}{9x - 9} \div \dfrac{2x^2 - 2x}{3}\)

    Answer

    \(\dfrac{8x^4(x + 1)}{3(x-1)}\)

    Exercise \(\PageIndex{15}\)

    \((m + 3) \div \dfrac{2m + 6}{5m + 1}\)

    Answer

    \(\dfrac{5m + 1}{2}\)

    Exercise \(\PageIndex{16}\)

    \(\dfrac{3y + 10}{8y^2 + 10y - 3} - \dfrac{5y - 1}{4y^2 + 23y - 6}\)

    Answer

    \(\dfrac{-7y^2 + 15y + 63}{(4y-1)(2y + 3)(y + 6)}\)

    Exercise \(\PageIndex{17}\)

    Solve \(\dfrac{1}{x+3} + \dfrac{3}{x-3} = \dfrac{x}{x^2 - 9}\)

    Answer

    \(x = -2\)

    Exercise \(\PageIndex{18}\)

    Solve \(\dfrac{12}{m-4} + 5 = \dfrac{3m}{m-4}\).

    Answer

    No solution; \(m=4\) is excluded.

    Exercise \(\PageIndex{19}\)

    When the same number is added to both the numerator and denominator of the fraction \(\dfrac{5}{3}\), the result is \(\dfrac{6}{5}\). What is the number that is added?

    Answer

    \(7\)

    Exercise \(\PageIndex{20}\)

    Person A, working alone, can complete a job in 20 hours. Person B, working alone, can complete the same job in 30 hours. How long will it take both people, working together, to complete the job?

    Answer

    12 hours

    Exercise \(\PageIndex{21}\)

    The width of a rectangle is 1 foot longer than one-half the length. Find the dimensions (lengh and width) of the rectangle if the perimeter is 44 feet.

    Answer

    8 ft by 14 ft

    Exercise \(\PageIndex{22}\)

    Simplify the complex fraction \(\dfrac{4 - \frac{3}{x}}{4 + \frac{3}{x}}\)

    Answer

    \(\dfrac{4x - 3}{4x + 3}\)

    Exercise \(\PageIndex{23}\)

    Simplify the complex fraction \(\dfrac{1-\frac{5}{x}-\frac{6}{x^{2}}}{1+\frac{6}{x}+\frac{5}{x^{2}}}\)

    Answer

    \(\dfrac{x-6}{x + 5}\)

    Exercise \(\PageIndex{24}\)

    Perform the division: \(\dfrac{x^3 + 10x^2 + 21x - 18}{x + 6}\)

    Answer

    \(x^2 + 4x - 3\)

    Exercise \(\PageIndex{25}\)

    Perform the division: \(\dfrac{2x^3 + 5x - 1}{x - 2}\)

    Answer

    \(2x^2 + 4x + 13 + \dfrac{25}{x - 2}\)


    This page titled 8.13: Proficiency Exam is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Denny Burzynski & Wade Ellis, Jr. (OpenStax CNX) .

    • Was this article helpful?