8.E: Review Exercises and Sample Exam
- Page ID
- 22223
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Review Exercises
(Assume all variables represent nonnegative numbers.)
Simplify.
- \(\sqrt{36}\)
- \(\sqrt{425}\)
- \(\sqrt{−16}\)
- \(-\sqrt{9}\)
- \(\sqrt[3]{125}\)
- \(3\sqrt[3]{−8}\)
- \(\sqrt[3]{\frac{1}{64}}\)
- \(−5\sqrt[3]{−27}\)
- \(\sqrt{40}\)
- \(−3\sqrt{50}\)
- \(\sqrt{\frac{98}{81}}\)
- \(\sqrt{\frac{11}{21}}\)
- \(5\sqrt[3]{192}\)
- \(2\sqrt[3]{−54}\)
- Answer
-
1. 6
3. Not a real number
5. 5
7. \(\frac{1}{4}\)
9. \(2\sqrt{10}\)
11. \(\frac{7 \sqrt{2}}{9}\)
13. \(20\sqrt[3]{3}\)
Simplify.
- \(\sqrt{49x^{2}}\)
- \(\sqrt{25a^{2}b^{2}}\)
- \(\sqrt{75x^{3}y^{2}}\)
- \(\sqrt{200m^{4}n^{3}}\)
- \(\sqrt{\frac{18 x^{3}}{25 y^{2}}}\)
- \(\sqrt{\frac{108 x^{3}}{49 y^{4}}}\)
- \(\sqrt[3]{216 x^{3}}\)
- \(\sqrt[3]{−125x^{6}y^{3}}\)
- \(\sqrt[3]{27a^{7}b^{5}c^{3}}\)
- \(\sqrt[3]{120x^{9}y^{4}}\)
- Answer
-
1. \(7x\)
3. 5xy\(\sqrt{3x}\)
5. \(\frac{3x\sqrt{2x}}{5y}\)
7. \(6x\)
9. \(3a^{2}bc\sqrt[3]{ab^{2}}\)
Use the distance formula to calculate the distance between the given two points.
- \((5, −8)\) and \((2, −10)\)
- \((−7, −1)\) and \((−6, 1)\)
- \((−10, −1)\) and \((0, −5)\)
- \((5, −1)\) and \((−2, −2)\)
- Answer
-
1. \(\sqrt{13}\)
3. \(2\sqrt{29}\)
Simplify.
- \(8\sqrt{3}+3\sqrt{3}\)
- \(12\sqrt{10}−2\sqrt{10}\)
- \(14\sqrt{3}+5\sqrt{2}−5\sqrt{3}−6\sqrt{2}\)
- \(22\sqrt{ab}−5\sqrt{ab}+7\sqrt{ab}−2\sqrt{ab}\)
- \(7\sqrt{x}−(3\sqrt{x}+2\sqrt{y})\)
- \((8y\sqrt{x}−7x\sqrt{y})−(5x\sqrt{y}−12y\sqrt{x})\)
- \(\sqrt{45}+\sqrt{12}−\sqrt{20}−\sqrt{75}\)
- \(\sqrt{24}−\sqrt{32}+\sqrt{54}−2\sqrt{32}\)
- \(2 \sqrt{3 x^{2}}+\sqrt{45 x}-x \sqrt{27}+\sqrt{20 x}\)
- \(\sqrt{56a^{2}b}+\sqrt{8a^{2}b^{2}}−\sqrt{224a^{2}b}−a\sqrt{18b^{2}}\)
- \(5y\sqrt{4x^{2}y}−(x\sqrt{16y^{3}}−2\sqrt{9x^{2}y^{3}})\)
- \((2b\sqrt{9a^{2}c}−3a\sqrt{16b^{2}c})−(\sqrt{64a^{2}b^{2}c}−9b\sqrt{a^{2}c})\)
- \(\sqrt[3]{216x}−\sqrt[3]{125xy}−\sqrt[3]{8x}\)
- \(\sqrt[3]{128x^{3}}−2x\sqrt[3]{54}+3\sqrt[3]{2x^{3}}\)
- \(\sqrt[3]{8x^{3}y}−2x\sqrt[3]{8y}+\sqrt[3]{27x^{3}y}+x\sqrt[3]{y}\)
- \(\sqrt[3]{27a^{3}b}−3\sqrt[3]{8ab^{3}}+a\sqrt[3]{64b}−b\sqrt[3]{a}\)
- Answer
-
1. \(11\sqrt{3}\)
3. \(9 \sqrt{3}-\sqrt{2}\)
5. \(4 \sqrt{x}-2 \sqrt{y}\)
7.\(\sqrt{5}-3 \sqrt{3}\)
9. \(-\sqrt{3} x+5 \sqrt{5} \sqrt{x}\)
11. \(12xy\sqrt{y}\)
13. \(4 \sqrt[3]{x}-5 \sqrt[3]{x y}\)
15. \(2 x \sqrt[3]{y}\)
Multiply.
- \(\sqrt{3}\cdot\sqrt{6}\)
- \((3\sqrt{5})^{2}\)
- \(\sqrt{2}(\sqrt{3}−\sqrt{6})\)
- \((\sqrt{2}−\sqrt{6})^{2}\)
- \((1−\sqrt{5})(1+\sqrt{5})\)
- \((2\sqrt{3}+\sqrt{5})(3\sqrt{2}−2\sqrt{5})\)
- \(\sqrt[3]{2a^{2}}\cdot\sqrt[3]{4a}\)
- \(\sqrt[3]{25a^{2}b}\cdot\sqrt[3]{5a^{2}b^{2}}\)
- Answer
-
1. \(3\sqrt{2}\)
3. \(\sqrt{6}-2 \sqrt{3}\)
5. \(−4\)
7. \(2a\)
Divide.
- \(\frac{\sqrt{72}}{\sqrt{4}}\)
- \(10 \frac{\sqrt{48}}{\sqrt{64}}\)
- \(\frac{\sqrt{98 x^{4} y^{2}}}{\sqrt{36 x^{2}}}\)
- \(\frac{\sqrt[3]{81 x^{6} y^{7}}}{\sqrt[3]{8 y^{3}}}\)
- Answer
-
1. \(3\sqrt{2}\)
3. \(\frac{7xy \sqrt{2}}{6}\)
Rationalize the denominator.
- \(\frac{2}{\sqrt{7}}\)
- \(\frac{\sqrt{6}}{\sqrt{3}}\)
- \(\sqrt{\frac{14}{2 x}}\)
- \(\sqrt{\frac{12}{15}}\)
- \(\sqrt[3]{\frac{1}{2 x^{2}}}\)
- \(\sqrt[3]{\frac{5 a^{2} b^{5}}{a b^{2}}}\)
- \(\frac{1}{\sqrt{3}-\sqrt{2}}\)
- \(\frac{\sqrt{2}-\sqrt{6}}{\sqrt{2}+\sqrt{6}}\)
- Answer
-
1. \(\frac{2 \sqrt{7}}{7}\)
3. \(\frac{\sqrt{7} \sqrt{x}}{x}\)
5. \(\frac{2^{\frac{2}{3}} \sqrt[3]{x}}{2 x}\)
7. \(\sqrt{3}+\sqrt{2}\)
Express in radical form.
- \(7^{1/2}\)
- \(3^{2/3}\)
- \(x^{4/5}\)
- \(y^{−3/4}\)
- Answer
-
1. \(\sqrt{7}\)
3. \(\sqrt[5]{x^{4}}\)
Write as a radical and then simplify.
- \(4^{1/2}\)
- \(50^{1/2}\)
- \(4^{2/3}\)
- \(81^{1/3}\)
- \((\frac{1}{4})^{3/2}\)
- \((\frac{12}{16})^{−1/3}\)
- Answer
-
1. \(2\)
3. \(2\sqrt[3]{2}\)
5. \(\frac{1}{8}\)
Perform the operations and simplify. Leave answers in exponential form.
- \(3^{1/2}\cdot 3^{3/2}\)
- \(2^{1/2}\cdot 2^{1/3}\)
- \(\frac{4^{\frac{3}{2}}}{4^{\frac{1}{2}}}\)
- \(\frac{9^{\frac{3}{4}}}{9^{\frac{1}{4}}}\)
- \(\left(36 x^{4} y^{2}\right)^{\frac{1}{2}}\)
- \((8x^{6}y^{9})^{1/3}\)
- \(\left(\frac{a^{\frac{4}{3}}}{a^{\frac{1}{2}}}\right)^{\frac{2}{5}}\)
- \(\left(\frac{16 x^{\frac{4}{3}}}{y^{2}}\right)^{\frac{1}{2}}\)
- Answer
-
1. \(9\)
3. \(4\)
5. \(6x^{2}y\)
7. \(a^{1/3}\)
Solve.
- \(\sqrt{x}=5\)
- \(\sqrt{2x−1}=3\)
- \(\sqrt{x−8}+2=5\)
- \(\sqrt{3x−5}−1=11\)
- \(\sqrt{5x−3}=\sqrt{2x+15}\)
- \(\sqrt{8x−15}=x\)
- \(\sqrt{x+41}=x−1\)
- \(\sqrt{7−3x}=x−3\)
- \(2(x+1)=\sqrt{2(x+1)}\)
- \(\sqrt{x(x+6)}=4\)
- \(\sqrt[3]{x(3x+10)}=2\)
- \(\sqrt[3]{2x^{2}−x}+4=5\)
- \(\sqrt[3]{3(x+4)(x+1)}=\sqrt[3]{5x+37}\)
- \(\sqrt[3]{3x^{2}−9x+24}=\sqrt[3]{(x+2)^{2}}\)
- \(y^{1/2}−3=0\)
- \(y^{1/3}+3=0\)
- \((x−5)^{1/2}−2=0\)
- \((2x−1)^{1/3}−5=0\)
- Answer
-
1. \(25\)
3. \(17\)
5. \(6\)
7. \(8\)
9. \(−\frac{1}{2}, −1\)
11. \(\frac{2}{3}, −4\)
13. \(−5, \frac{5}{3}\)
15. \(9\)
17. \(9\)
Sample Exam
In Exercises 12-16, assume all variables represent nonnegative numbers.
Simplify.
-
- \(\sqrt{100}\)
- \(\sqrt{-100}\)
- \(-\sqrt{100}\)
- Answer
-
1. a. 10 b. Not a real number c. -10
Simplify.
- g
- \(\sqrt[3]{27}\)
- \(\sqrt[3]{-27}\)
- \(-\sqrt[3]{27}\)
- \(\sqrt{\frac{128}{25}}\)
- \(\sqrt[3]{\frac{192}{125}}\)
- \(5 \sqrt{12 x^{2} y^{3} z}\)
- \(2 \sqrt[3]{50 x^{2} y^{3} z^{5}}\)
- Answer
-
2. \(\frac{8 \sqrt{2}}{5}\)
4. \(10xy\sqrt{3yz}\)
Perform the operations.
- \(5 \sqrt{24}-\sqrt{108}+\sqrt{96}-3 \sqrt{27}\)
- \(3 \sqrt{8 x^{2} y}-\left(x \sqrt{200 y}-\sqrt{18 x^{2} y}\right)\)
- \(2 \sqrt{a b} \cdot(3 \sqrt{2 a}-\sqrt{b})\)
- \((\sqrt{x}−\sqrt{2y})^{2}\)
- Answer
-
1. \(14 \sqrt{6}-15 \sqrt{3}\)
3. \(6a\sqrt{2b}−2b\sqrt{a}\)
Rationalize the denominator.
- \(\frac{10}{\sqrt{2 x}}\)
- \(\sqrt[3]{\frac{1}{4 x y^{2}}}\)
- \(\frac{1}{\sqrt{x}+5}\)
- \(\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}\)
- Answer
-
1. \(\frac{5 \sqrt{2x}}{x}\)
3. \(\frac{\sqrt{x}-5}{x-25}\)
Perform the operations and simplify. Leave answers in exponential form.
- \(2^{\frac{2}{3}} \cdot 2^{\frac{1}{6}}\)
- \(\frac{10^{\frac{4}{5}}}{10^{\frac{1}{3}}}\)
- \(\left(121 a^{4} b^{2}\right)^{\frac{1}{2}}\)
- \(\frac{\left(9 y^{\frac{1}{3}} x^{6}\right)^{\frac{1}{2}}}{y^{\frac{1}{6}}}\)
- Answer
-
1. \(2^{5/6}\)
3. \(11a^{2}b\)
Solve.
- \(\sqrt{x}-7=0\)
- \(\sqrt{3x+5}=1\)
- \(\sqrt{2x−1}+2=x\)
- \(3\sqrt{1−10x}=x−4\)
- \(\sqrt{(2x+1)(3x+2)}=\sqrt{3(2x+1)}\)
- \(\sqrt[3]{x(2x−15)}=3\)
- The period, T, of a pendulum in seconds is given the formula \(T=2π\sqrt{L/32}\), where L represents the length in feet. Calculate the length of a pendulum if the period is \(1^{1/2}\) seconds. Round off to the nearest tenth.
- Answer
-
1. 49
3. 5
5. \(-\frac{1}{2}, \frac{1}{3}\)
7. 1.8 feet