6.4E: Exercises
( \newcommand{\kernel}{\mathrm{null}\,}\)
Practice Makes Perfect
Factor Perfect Square Trinomials
In the following exercises, factor completely using the perfect square trinomials pattern.
1. 16y2+24y+9
- Answer
-
(4y+3)2
2. 25v2+20v+4
3. 36s2+84s+49
- Answer
-
(6s+7)2
4. 49s2+154s+121
5. 100x2−20x+1
- Answer
-
(10x−1)2
6. 64z2−16z+1
7. 25n2−120n+144
- Answer
-
(5n−12)2
8. 4p2−52p+169
9. 49x2+28xy+4y2
- Answer
-
(7x+2y)2
10. 25r2+60rs+36s2
11. 100y2−52y+1
- Answer
-
(50y−1)(2y−1)
12. 64m2−34m+1
13. 10jk2+80jk+160j
- Answer
-
10j(k+4)2
14. 64x2y−96xy+36y
15. 75u4−30u3v+3u2v2
- Answer
-
3u2(5u−v)2
16. 90p4+300p4q+250p2q2
Factor Differences of Squares
In the following exercises, factor completely using the difference of squares pattern, if possible.
17. 25v2−1
- Answer
-
(5v−1)(5v+1)
18. 169q2−1
19. 4−49x2
- Answer
-
(7x−2)(7x+2)
20. 121−25s2
21. 6p2q2−54p2
- Answer
-
6p2(q−3)(q+3)
22. 98r3−72r
23. 24p2+54
- Answer
-
6(4p2+9)
24. 20b2+140
25. 121x2−144y2
- Answer
-
(11x−12y)(11x+12y)
26. 49x2−81y2
27. 169c2−36d2
- Answer
-
(13c−6d)(13c+6d)
28. 36p2−49q2
29. 16z4−1
- Answer
-
(2z−1)(2z+1)(4z2+1)
30. m4−n4
31. 162a4b2−32b2
- Answer
-
2b2(3a−2)(3a+2)(9a2+4)
32. 48m4n2−243n2
33. x2−16x+64−y2
- Answer
-
(x−8−y)(x−8+y)
34. p2+14p+49−q2
35. a2+6a+9−9b2
- Answer
-
(a+3−3b)(a+3+3b)
36. m2−6m+9−16n2
Factor Sums and Differences of Cubes
In the following exercises, factor completely using the sums and differences of cubes pattern, if possible.
37. x3+125
- Answer
-
(x+5)(x2−5x+25)
38. n6+512
39. z6−27
- Answer
-
(z2−3)(z4+3z2+9)
40. v3−216
41. 8−343t3
- Answer
-
(2−7t)(4+14t+49t2)
42. 125−27w3
43. 8y3−125z3
- Answer
-
(2y−5z)(4y2+10yz+25z2)
44. 27x3−64y3
45. 216a3+125b3
- Answer
-
(6a+5b)(36a2−30ab+25b2)
46. 27y3+8z3
47. 7k3+56
- Answer
-
7(k+2)(k2−2k+4)
48. 6x3−48y3
49. 2x2−16x2y3
- Answer
-
2x2(1−2y)(1+2y+4y2)
50. −2x3y2−16y5
51. (x+3)3+8x3
- Answer
-
9(x+1)(x2+3)
52. (x+4)3−27x3
53. (y−5)3−64y3
- Answer
-
−(3y+5)(21y2−30y+25)
54. (y−5)3+125y3
Mixed Practice
In the following exercises, factor completely.
55. 64a2−25
- Answer
-
(8a−5)(8a+5)
56. 121x2−144
57. 27q2−3
- Answer
-
3(3q−1)(3q+1)
58. 4p2−100
59. 16x2−72x+81
- Answer
-
(4x−9)2
60. 36y2+12y+1
61. 8p2+2
- Answer
-
2(4p2+1)
62. 81x2+169
63. 125−8y3
- Answer
-
(5−2y)(25+10y+4y2)
64. 27u3+1000
65. 45n2+60n+20
- Answer
-
5(3n+2)2
66. 48q3−24q2+3q
67. x2−10x+25−y2
- Answer
-
(x+y−5)(x−y−5)
68. x2+12x+36−y2
69. (x+1)3+8x3
- Answer
-
(3x+1)(3x2+1)
70. (y−3)3−64y3
Writing Exercises
71. Why was it important to practice using the binomial squares pattern in the chapter on multiplying polynomials?
- Answer
-
Answers will vary.
72. How do you recognize the binomial squares pattern?
73. Explain why n2+25≠(n+5)2. Use algebra, words, or pictures.
- Answer
-
Answers will vary.
74. Maribel factored y2−30y+81 as (y−9)2. Was she right or wrong? How do you know?
Self Check
a. After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

b. What does this checklist tell you about your mastery of this section? What steps will you take to improve?