Key Terms Chapter 08: Roots and Radicals
- Page ID
- 102255
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)
Words (or words that have the same definition) | The definition is case sensitive | (Optional) Image to display with the definition [Not displayed in Glossary, only in pop-up on pages] | (Optional) Caption for Image | (Optional) External or Internal Link | (Optional) Source for Definition |
---|---|---|---|---|---|
(Eg. "Genetic, Hereditary, DNA ...") | (Eg. "Relating to genes or heredity") | ![]() | The infamous double helix | https://bio.libretexts.org/ | CC-BY-SA; Delmar Larsen |
Word(s) | Definition | Image | Caption | Link | Source |
---|---|---|---|---|---|
complex conjugate pair | A complex conjugate pair is of the form \(a+bi, a-bi\) | ||||
complex number | A complex number is of the form \(a+bi\), where \(a\) and \(b\) are real numbers. We call \(a\) the real part and \(b\) the imaginary part. | ||||
complex number system | The complex number system is made up of both the real numbers and the imaginary numbers. | ||||
imaginary unit | The imaginary unit \(i\) is the number whose square is \(–1\). \(i^2 = -1\) or \(i=\sqrt{-1}\). | ||||
like radicals | Like radicals are radical expressions with the same index and the same radicand. | ||||
radical equation | An equation in which a variable is in the radicand of a radical expression is called a radical equation. | ||||
radical function | A radical function is a function that is defined by a radical expression. | ||||
rationalizing the denominator | Rationalizing the denominator is the process of converting a fraction with a radical in the denominator to an equivalent fraction whose denominator is an integer. | ||||
square of a number | If \(n^2=m\), then \(m\) is the square of \(n\). | ||||
square root of a number | If \(n^2=m\), then \(n\) is a square root of \(m\). | ||||
standard form | A complex number is in standard form when written as \(a+bi\), where \(a\), \(b\) are real numbers. |