Skip to main content

# 3.3: Power Sets

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Definition

Given a set $$A,$$ we call the set of all subsets of $$A$$ the power set of $$A,$$ which we denote $$\mathcal{P}(A)$$.

## Example $$\PageIndex{1}$$

If $$A=\{1,2,3\},$$ then

$\mathcal{P}(A)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}.$

## Proposition $$\PageIndex{1}$$

If $$A$$ is finite with $$|A|=n,$$ then $$|\mathcal{P}(A)|=2^{n}$$.

Proof

Let

$B=\left\{\left(b_{1}, b_{2}, \ldots, b_{n}\right): b_{i}=0 \text { or } b_{i}=1, i=1,2, \ldots, n\right\}$

and let $$a_{1}, a_{2}, \ldots, a_{n}$$ be the elements of $$A .$$ Define $$\varphi: B \rightarrow \mathcal{P}(A)$$ by letting

$\varphi\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left\{a_{i}: b_{i}=1, i=1,2, \ldots, n\right\}.$

Then $$\varphi$$ is a one-to-one correspondence. The result now follows from the next exercise. $$\quad$$ Q.E.D.

## Exercise $$\PageIndex{1}$$

With $$B$$ as in the previous proposition, show that $$|B|=2^{n}$$.

In analogy with the case when $$A$$ is finite, we let $$2^{|A|}=|\mathcal{P}(A)|$$ for any nonempty set $$A .$$

## Definition

Suppose $$A$$ and $$B$$ are sets for which there exists a one-to-one function $$\varphi: A \rightarrow \bar{B}$$ but there does not exist a one-to-one correspondence $$\psi: A \rightarrow B .$$ Then we write $$|A|<|B| .$$

## Theorem $$\PageIndex{2}$$

If $$A$$ is a nonempty set, then $$|A|<|\mathcal{P}(A)|$$.

Proof

Define $$\varphi: A \rightarrow \mathcal{P}\left(\mathbb{Z}^{+}\right)$$ by

$\varphi\left(\left\{a_{i}\right\}_{i=1}^{\infty}\right)=\left\{i: i \in \mathbb{Z}^{+}, a_{i}=1\right\}.$

Then $$\varphi$$ is a one-to-one correspondence. $$\quad$$ Q.E.D.

Now let $$B$$ be the set of all sequences $$\left\{a_{i}\right\}_{i=1}^{\infty}$$ in $$A$$ such that for every integer $$N$$ there exists an integer $$n>N$$ such that $$a_{n}=0 .$$ Let $$C=A \backslash B$$,

$D_{0}=\left\{\left\{a_{i}\right\}_{i=1}^{\infty}: a_{i}=1, i=1,2,3, \ldots\right\},$

and

$D_{j}=\left\{\left\{a_{i}\right\}_{i=1}^{\infty}: a_{j}=0, a_{k}=1 \text { for } k>j\right\}$

for $$j=1,2,3, \ldots$$ Then $$\left|D_{0}\right|=1$$ and $$\left|D_{j}\right|=2^{j-1}$$ for $$j=1,2,3, \ldots$$ Moreover,

$C=\bigcup_{j=0}^{\infty} D_{j},$

so $$C$$ is countable. Since $$A=B \cup C,$$ and $$A$$ is uncountable, it follows that $$B$$ is uncountable. Now if we let

$I=\{x: x \in \mathbb{R}, 0 \leq x<1\},$

we have seen that the function $$\varphi: B \rightarrow I$$ defined by

$\varphi\left(\left\{a_{i}\right\}_{i=1}^{\infty}\right)=a_{1} a_{2} a_{3} a_{4} \ldots$

is a one-to-one correspondence. It follows that $$I$$ is uncountable. As a consequence, we have the following result.

## Theorem $$\PageIndex{4}$$

$$\mathbb{R}$$ is uncountable.

## Exercise $$\PageIndex{2}$$

Let $$I=\{x: x \in \mathbb{R}, 0 \leq x<1\} .$$ Show that

a. $$|I|=|\{x: x \in \mathbb{R}, 0 \leq x \leq 1\}|$$

b. $$|I|=|\{x: x \in \mathbb{R}, 0<x<1\}|$$

c. $$|I|=|\{x: x \in \mathbb{R}, 0<x<2\}|$$

d. $$|I|=|\{x: x \in \mathbb{R},-1<x<1\}|$$

## Exercise $$\PageIndex{3}$$

Let $$I=\{x: x \in \mathbb{R}, 0 \leq x<1\}$$ and suppose $$a$$ and $$b$$ are real numbers with $$a<b .$$ Show that

$|I|=|\{x: x \in \mathbb{R}, a \leq x<b\}|.$

## Exercise $$\PageIndex{4}$$

Does there exist a set $$A \subset \mathbb{R}$$ for which $$\aleph_{0}<|A|<2^{\aleph_{0}} ?$$ (Before working too long on this problem, you may wish to read about Cantor's continum hypothesis.)

This page titled 3.3: Power Sets is shared under a CC BY-NC-SA 1.0 license and was authored, remixed, and/or curated by Dan Sloughter via source content that was edited to the style and standards of the LibreTexts platform.

• Was this article helpful?