Skip to main content
Mathematics LibreTexts

5.3: Limits to Infinity and Infinite Limits

  • Page ID
    22666
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Definition

    Let \(D \subset \mathbb{R}, f: D \rightarrow \mathbb{R},\) and suppose \(a\) is a limit point of \(D\). We say that \(f\) diverges to \(+\infty\) as \(x\) approaches \(a\), denoted

    \[\lim _{x \rightarrow a} f(x)=+\infty ,\]

    if for every real number \(M\) there exists a \(\delta>0\) such that

    \[f(x)>M \text { whenever } x \neq a \text { and } x \in(a-\delta, a+\delta) \cap D.\]

    Similarly, we say that that \(f\) diverges to \(-\infty\) as \(x\) approaches \(a,\) denoted

    \[\lim _{x \rightarrow a} f(x)=-\infty ,\]

    if for every real number \(M\) there exists a \(\delta>0\) such that

    \[f(x)<M \text { whenever } x \neq a \text { and } x \in(a-\delta, a+\delta) \cap D.\]

    Exercise \(\PageIndex{1}\)

    Provide definitions for

    a. \(\lim _{x \rightarrow a^{+}} f(x)=+\infty\),

    b. \(\lim _{x \rightarrow a^{-}} f(x)=+\infty\),

    c. \(\lim _{x \rightarrow a^{+}} f(x)=-\infty\),

    d. \(\lim _{x \rightarrow a^{-}} f(x)=-\infty\).

    Model your definitions on the preceding definitions.

    Exercise \(\PageIndex{2}\)

    Show that \(\lim _{x \rightarrow 4^{+}} \frac{7}{4-x}=-\infty\) and \(\lim _{x \rightarrow 4^{-}} \frac{7}{4-x}=+\infty\).

    Definition

    Suppose \(D \subset \mathbb{R}\) does not have an upper bound, \(f: D \rightarrow \mathbb{R}\), and \(L \in \mathbb{R} .\) We say that the limit of \(f\) as \(x\) approaches \(+\infty\) is \(L,\) denoted

    \[\lim _{x \rightarrow+\infty} f(x)=L,\]

    if for every \(\epsilon>0\) there exists a real number \(M\) such that

    \[|f(x)-L|<\epsilon \text { whenever } x \in(M,+\infty) \cap D.\]

    Definition

    Suppose \(D \subset \mathbb{R}\) does not have an lower bound, \(f: D \rightarrow \mathbb{R}\), and \(L \in \mathbb{R} .\) We say that the limit of \(f\) as \(x\) approaches \(-\infty\) is \(L,\) denoted

    \[\lim _{x \rightarrow-\infty} f(x)=L,\]

    if for every \(\epsilon>0\) there exists a real number \(M\) such that

    \[|f(x)-L|<\epsilon \text { whenever } x \in(-\infty, M) \cap D.\]

    Exercise \(\PageIndex{3}\)

    Verify that \(\lim _{x \rightarrow+\infty} \frac{x+1}{x+2}=1\).

    Exercise \(\PageIndex{4}\)

    Provide definitions for

    a. \(\lim _{x \rightarrow+\infty} f(x)=+\infty\),

    b. \(\lim _{x \rightarrow+\infty} f(x)=-\infty\),

    c. \(\lim _{x \rightarrow-\infty} f(x)=+\infty\),

    d. \(\lim _{x \rightarrow-\infty} f(x)=-\infty\).

    Model your definitions on the preceding definitions.

    Exercise \(\PageIndex{5}\)

    Suppose

    \[f(x)=a x^{3}+b x^{2}+c x+d,\]

    where \(a, b, c, d \in \mathbb{R}\) and \(a>0 .\) Show that

    \[\lim _{x \rightarrow+\infty} f(x)=+\infty \text { and } \lim _{x \rightarrow-\infty} f(x)=-\infty .\]


    This page titled 5.3: Limits to Infinity and Infinite Limits is shared under a CC BY-NC-SA 1.0 license and was authored, remixed, and/or curated by Dan Sloughter via source content that was edited to the style and standards of the LibreTexts platform.