# 5.2: Monotonic Functions

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

## Definition

Suppose $$D \subset \mathbb{R}, f: D \rightarrow \mathbb{R},$$ and $$(a, b) \subset D .$$ We say $$f$$ is increasing on $$(a, b)$$ if $$f(x)<f(y)$$ whenever $$a<x<y<b ;$$ we say $$f$$ is decreasing on $$(a, b)$$ if $$f(x)>f(y)$$ whenever $$a<x<y<b ;$$ we say $$f$$ is nondecreasing on $$(a, b)$$ if $$f(x) \leq f(y)$$ whenever $$a<x<y<b ;$$ and we say $$f$$ is nonincreasing on $$(a, b)$$ if $$f(x) \geq f(y)$$ whenever $$a<x<y<b .$$ We will say $$f$$ is monotonic on $$(a, b)$$ if $$f$$ is either nondecreasing or nonincreasing on $$(a, b)$$ and we will say $$f$$ is strictly monotonic on $$(a, b)$$ if $$f$$ is either increasing or decreasing on $$(a, b)$$.

## Proposition $$\PageIndex{1}$$

If $$f$$ is monotonic on $$(a, b),$$ then $$f(c+)$$ and $$f(c-)$$ exist for every $$c \in(a, b)$$.

Proof

Suppose $$f$$ is nondecreasing on $$(a, b) .$$ Let $$c \in(a, b)$$ and let

$\lambda=\sup \{f(x): a<x<c\}.$

Note that $$\lambda \leq f(c)<+\infty .$$ Given any $$\epsilon>0,$$ there must exist $$\delta>0$$ such that

$\lambda-\epsilon<f(c-\delta) \leq \lambda .$

Since $$f$$ is nondecreasing, it follows that

$|f(x)-\lambda|<\epsilon$

whenever $$x \in(c-\delta, c) .$$ Thus $$f(c-)=\lambda .$$ A similar argument shows that $$f(c+)=\kappa$$ where

$\kappa=\inf \{f(x): c<x<b\}.$

If $$f$$ is nonincreasing, similar arguments yield

$f(c-)=\inf \{f(x): a<x<c\}$

and

$f(c+)=\sup \{f(x): c<x<b\}.$

## Proposition $$\PageIndex{2}$$

If $$f$$ is nondecreasing on $$(a, b)$$ and $$a<x<y<b,$$ then

$f(x+) \leq f(y-).$

Proof

By the previous proposition,

$f(x+)=\inf \{f(t): x<t<b\}$

and

$f(y-)=\sup \{f(t): a<t<y\}.$

Since $$f$$ is nondecreasing,

$\inf \{f(t): x<t<b\}=\inf \{f(t): x<t<y\}$

and

$\sup \{f(t): a<t<y\}=\sup \{f(t): x<t<y\}.$

Thus

$f(x+)=\inf \{f(t): x<t<y\} \leq \sup \{f(t): x<t<y\}=f(y-).$

Q.E.D.

## Exercise $$\PageIndex{1}$$

Let $$\varphi: \mathbb{Q} \cap[0,1] \rightarrow \mathbb{Z}^{+}$$ be a one-to-one correspondence. Define $$f:[0,1] \rightarrow \mathbb{R}$$ by

$f(x)=\sum_{q \in \mathbb{Q} \cap[0,1]_{q \leq x}} \frac{1}{2^{\varphi(q)}}.$

a. Show that $$f$$ is increasing on $$(0,1)$$.

b. Show that for any $$x \in \mathbb{Q} \cap(0,1), f(x-)<f(x)$$ and $$f(x+)=f(x)$$.

c. Show that for any irrational $$a, 0<a<1, \lim _{x \rightarrow a} f(x)=f(a)$$.

This page titled 5.2: Monotonic Functions is shared under a CC BY-NC-SA 1.0 license and was authored, remixed, and/or curated by Dan Sloughter via source content that was edited to the style and standards of the LibreTexts platform.