Processing math: 64%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

5.1: Limits

( \newcommand{\kernel}{\mathrm{null}\,}\)

Let AR and let x be a limit point of A. In the following, we will let S(A,x) denote the set of all convergent sequences {xn}nI such that xnA for all nI,xnx for all nI, and limnxn=x. We will let S+(A,x) be the subset of S(A,x) of sequences {xn}nI for which xn>x for all nI and S(A,x) be the subset of S(A,x) of sequences {xn}nI for which xn<x for all nI.

Definition

Let DR,f:DR,LR, and suppose a is a limit point of D. We say the limit of f as x approaches a is L, denoted

limxaf(x)=L,

if for every sequence {xn}nIS(D,a),

limnf(xn)=L.

If S+(D,a), we say the limit from the right of f as x approaches a is L, denoted

limxa+f(x)=L,

if for every sequence {xn}nIS+(D,a),

limnf(xn)=L,

and, if S(D,a), we say the limit from the left of f as x approaches a is L, denoted

limxaf(x)=L,

if for every sequence {xn}nIS(D,a),

limnf(xn)=L.

We may also denote

limxaf(x)=L

by writing

f(x)L as xa.

Similarly, we may denote

limxa+f(x)=L

by writing

f(x)L as xa

and

limxaf(x)=L

by writing

f(x)L as xa

We also let

f(a+)=limxa+f(x)

and

f(a)=limxaf(x).

It should be clear that if limxaf(x)=L and S+(D,a), then f(a+)=L. Similarly, if limxaf(x)=L and S(D,a), then f(a)=L.

Proposition 5.1.1

Suppose DR,f:DR, and a is a limit point of D. If f(a)=f(a+)=L, then limxaf(x)=L.

Proof

Suppose {xn}n=mS(D,a). Let

J={n:nZ,xn<a}

and

J+={n:nZ,xn>a}.

Suppose J is empty or finite and let k=m1 if J= and, otherwise, let k be the largest integer in J. Then {xn}n=k+1S+(D,a), and so

limnf(xn)=f(a+)=L.

A similar argument shows that if J+ is empty or finite, then

limnf(xn)=f(a)=L.

If neither J nor J+ is finite or empty, then {xn}nJ and {xn}nJ+ are subsequences of {xn}n=m with {xn}nJS(D,a) and {xn}nJ+S+(D,a). Hence, given any ϵ>0, we may find integers N and M such that

|f(xn)L|<ϵ

whenever n{j:jJ,j>N} and

|f(xn)L|<ϵ

whenever n{j:jJ+,j>M}. Let P be the larger of N and M. Since JJ+={j:jZ+,jm}, it follows that

|f(xn)L|<ϵ

whenever n>P. Hence limnf(xn)=L, and so limxaf(x)=L. Q.E.D.

Proposition 5.1.2

Suppose DR,a is a limit point of D, and f:DR. If limxaf(x)=L and αR, then

limxaαf(x)=αL.

Proof

Suppose {xn}nIS(D,a). Then

limnαf(xn)=αlimnf(xn)=αL.

Hence limxaαf(x)=αL. Q.E.D.

Proposition 5.1.3

Suppose DR,a is a limit point of D,f:DR, and g:DR. If limxaf(x)=L and limxag(x)=M, then

limxa(f(x)+g(x))=L+M.

Proof

Suppose {xn}nIS(D,a). Then

limn(f(xn)+g(xn))=limnf(xn)+limng(xn)=L+M.

Hence limxa(f(x)+g(x))=L+M. Q.E.D.

Proposition 5.1.4

Suppose DR,a is a limit point of D,f:DR, and g:DR. If limxaf(x)=L and limxag(x)=M, then

limxaf(x)g(x)=LM.

Exercise 5.1.1

Prove the previous proposition.

Proposition 5.1.5

Suppose DR,a is a limit point of D,f:DR, g:DR, and g(x)0 for all xD. If limxaf(x)=L,limxag(x)=M, and M0, then

limxaf(x)g(x)=LM.

Exercise 5.1.2

Prove the previous proposition.

Proposition 5.1.6

Suppose DR,a is a limit point of D,f:DR, and f(x)0 for all xD. If limxaf(x)=L, then

limxaf(x)=L.

Exercise 5.1.3

Prove the previous proposition.

Given DR,f:DR, and AD, we let

f(A)={y:y=f(x) for some xA}.

In particular, f(D) denotes the range of f.

Proposition 5.1.7

Suppose DR,ER,a is a limit point of D,g:DR, f:ER, and g(D)E. Moreover, suppose limxag(x)=b and, for some ϵ>0, g(x)b for all x(aϵ,a+ϵ)D. If limxbf(x)=L, then

limxafg(x)=L.

Proof

Suppose {xn}nIS(D,a). Then

limng(xn)=b.

Let NZ+ such that |xna|<ϵ whenever n>N. Then

{g(xn)}n=N+1S(E,b),

so

limnf(g(xn))=L.

Thus limxafg(x)=L. Q.E.D.

Example 5.1.1

Let

g(x)={0, if x0,1, if x=0.

If f(x)=g(x), then

fg(x)={1, if x0,0, if x=0.

Hence limx0fg(x)=1, although limx0g(x)=0 and limx0f(x)=0.

5.1.1 Limits of Polynomials and Rational Functions

Example 5.1.2

If cR and f:RR is given by f(x)=c for all xR, then clearly limxaf(x)=c for any aR.

Example 5.1.3

Suppose f:RR is defined by f(x)=x for all xR. If, for any aR,{xn}nIS(R,a), then

limnf(xn)=limnxn=a.

Hence limxax=a.

Example 5.1.4

Suppose nZ+ and f:RR is defined by f(x)=xn. Then

limxaf(x)=limxaxn=ni=1limxax=an.

Definition

If nZ,n0, and b_{0}, b_{1}, \ldots, b_{n} are real numbers with b_{n} \neq 0, then we call the function p: \mathbb{R} \rightarrow \mathbb{R} defined by

p(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x+b_{0}

a polynomial of degree n.

Exercise \PageIndex{4}

Show that if f is a polynomial and a \in \mathbb{R}, then \lim _{x \rightarrow a} f(x)=f(a).

Definition

Suppose p and q are polynomials and

D=\{x: x \in \mathbb{R}, q(x) \neq 0\}.

We call the function r: D \rightarrow \mathbb{R} defined by

r(x)=\frac{p(x)}{q(x)}

a rational function.

Exercise \PageIndex{5}

Show that if f is a rational function and a is in the domain of f, then \lim _{x \rightarrow a} f(x)=f(a).

Exercise \PageIndex{6}

Suppose D \subset \mathbb{R}, a \in D is a limit point of D, and \lim _{x \rightarrow a} f(x)=L. If E=D \backslash\{a\} and g: E \rightarrow \mathbb{R} is defined by g(x)=f(x) for all x \in E, show that \lim _{x \rightarrow a} g(x)=L .

Exercise \PageIndex{7}

Evaluate

\lim _{x \rightarrow 1} \frac{x^{5}-1}{x^{3}-1}.

Exercise \PageIndex{8}

Suppose D \subset \mathbb{R}, a is a limit point of D, f: D \rightarrow \mathbb{R}, g: D \rightarrow \mathbb{R}, h: D \rightarrow \mathbb{R}, and f(x) \leq h(x) \leq g(x) for all x \in D . If \lim _{x \rightarrow a} f(x)=L and \lim _{x \rightarrow a} g(x)=L, show that \lim _{x \rightarrow a} h(x)=L . (This is the squeeze theorem for limits of functions.)

Note that the above results which have been stated for limits will hold as well for the appropriate one-sided limits, that is, limits from the right or from the left.

Exercise \PageIndex{9}

Suppose

f(x)=\left\{\begin{array}{ll}{x+1,} & {\text { if } x<0,} \\ {4,} & {\text { if } x=0,} \\ {x^{2},} & {\text { if } x>0.}\end{array}\right.

Evaluate f(0), f(0-), and f(0+) . Does \lim _{x \rightarrow 0} f(x) exist?

5.1.2 Equivalent Definitions

Proposition \PageIndex{8}

Suppose D \subset \mathbb{R}, a is a limit point of D, and f: D \rightarrow \mathbb{R}. Then \lim _{x \rightarrow a} f(x)=L if and only if for every \epsilon>0 there exists a \delta>0 such that

|f(x)-L|<\epsilon \text { whenever } x \neq a \text { and } x \in(a-\delta, a+\delta) \cap D.

Proof

Suppose \lim _{x \rightarrow a} f(x)=L . Suppose there exists an \epsilon>0 such that for every \delta>0 there exists x \in(a-\delta, a+\delta) \cap D, x \neq a, for which |f(x)-L| \geq \epsilon. For n=1,2,3, \ldots, choose

x_{n} \in\left(a-\frac{1}{n}, a+\frac{1}{n}\right) \cap D,

x_{n} \neq a, such that \left|f\left(x_{n}\right)-L\right| \geq \epsilon . Then \left\{x_{n}\right\}_{n=1}^{\infty} \in S(D, a), but \left\{f\left(x_{n}\right)\right\}_{n=1}^{\infty} does not converge to L, contradicting the assumption that \lim _{x \rightarrow a} f(x)=L.

Now suppose that for every \epsilon>0 there exists \delta>0 such that |f(x)-L|<\epsilon whenever x \neq a and x \in(a-\delta, a+\delta) \cap D . Let \left\{x_{n}\right\}_{n \in I} \in S(D, a) . Given \epsilon>0, let \delta>0 be such that |f(x)-L|<\epsilon whenever x \neq a and x \in(a-\delta, a+\delta) \cap D . Choose N \in \mathbb{Z} such that \left|x_{n}-a\right|<\delta whenever n>N . Then \left|f\left(x_{n}\right)-L\right|<\epsilon for all n>N . Hence \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L, and so \lim _{x \rightarrow a} f(x)=L . \quad Q.E.D.

The proofs of the next two propositions are analogous.

Proposition \PageIndex{9}

Suppose D \subset \mathbb{R}, a is a limit point of D, f: D \rightarrow \mathbb{R}, and S^{-}(D, a) \neq \emptyset . Then \lim _{x \rightarrow a^{-}} f(x)=L if and only if for every \epsilon>0 there exists a \delta>0 such that

|f(x)-L|<\epsilon \text { whenever } x \in(a-\delta, a) \cap D.

Proposition \PageIndex{10}

Suppose D \subset \mathbb{R}, a is a limit point of D, f: D \rightarrow \mathbb{R}, and S^{+}(D, a) \neq \emptyset . Then \lim _{x \rightarrow a^{+}} f(x)=L if and only if for every \epsilon>0 there exists a \delta>0 such that

|f(x)-L|<\epsilon \text { whenever } x \in(a, a+\delta) \cap D.

5.1.3 Examples

Example \PageIndex{5}

Define f: \mathbb{R} \rightarrow \mathbb{R} by

f(x)=\left\{\begin{array}{ll}{1,} & {\text { if } x \text { is rational, }} \\ {0,} & {\text { if } x \text { is irrational. }}\end{array}\right.

Let a \in \mathbb{R} . Since every open interval contains both rational and irrational numbers, for any \delta>0 and any choice of L \in \mathbb{R}, there will exist x \in(a-\delta, a+\delta), x \neq a, such that

|f(x)-L| \geq \frac{1}{2}.

Hence \lim _{x \rightarrow a} f(x) does not exist for any real number a.

Example \PageIndex{6}

Define f: \mathbb{R} \rightarrow \mathbb{R} by

f(x)=\left\{\begin{array}{ll}{x,} & {\text { if } x \text { is rational, }} \\ {0,} & {\text { if } x \text { is irrational. }}\end{array}\right.

Then \lim _{x \rightarrow 0} f(x)=0 since, given \epsilon>0,|f(x)|<\epsilon provided |x|<\epsilon.

Exercise \PageIndex{9}

Show that if f is as given in the previous example and a \neq 0, then \lim _{x \rightarrow a} f(x) does not exist.

Exercise \PageIndex{11}

Define f: \mathbb{R} \rightarrow \mathbb{R} by

f(x)=\left\{\begin{array}{ll}{\frac{1}{q},} & {\text { if } x \text { is rational and } x=\frac{p}{q},} \\ {0,} & {\text { if } x \text { is irrational, }}\end{array}\right.

where p and q are taken to be relatively prime integers with q>0, and we take q=1 when x=0 . Show that, for any real number a, \lim _{x \rightarrow a} f(x)=0.

Figure-5-1-1.jpg

Example \PageIndex{7}

Define \varphi:[0,1] \rightarrow[-1,1] by

\varphi(x)=\left\{\begin{array}{ll}{4 x,} & {\text { if } 0 \leq x \leq \frac{1}{4},} \\ {2-4 x,} & {\text { if } \frac{1}{4}<x<\frac{3}{4},} \\ {4 x-4,} & {\text { if } \frac{3}{4} \leq x \leq 1.}\end{array}\right.

Next define s: \mathbb{R} \rightarrow \mathbb{R} by s(x)=\varphi(x-\lfloor x\rfloor), where \lfloor x\rfloor denotes the largest integer less than or equal to x (that is, \lfloor x\rfloor is the floor of x ). The function s is an example of a sawtooth function. See the graphs of \varphi and s in Figure 5.1 .1 . Note that for any n \in \mathbb{Z},

s([n, n+1])=[-1,1].

Now let D=\mathbb{R} \backslash\{0\} and define \sigma: D \rightarrow \mathbb{R} by

\sigma(x)=s\left(\frac{1}{x}\right).

See the graph of \sigma in Figure 5.1 .2 . Note that for any n \in \mathbb{Z}^{+},

\sigma\left(\left[\frac{1}{n+1}, \frac{1}{n}\right]\right)=s([n, n+1])=[-1,1].

Hence for any \epsilon>0, \sigma((0, \epsilon))=[-1,1], and so \lim _{x \rightarrow 0^{+}} \sigma(x) does not exist. Similarly, neither \lim _{x \rightarrow 0^{-}} \sigma(x) nor \lim _{x \rightarrow 0} \sigma(x) exist.

Example \PageIndex{8}

Let s be the sawtooth function of the previous example and let D=\mathbb{R} \backslash\{0\} . Define \psi: D \rightarrow \mathbb{R} by

\psi(x)=x s\left(\frac{1}{x}\right).

Figure-5-1-2.jpg

See Figure 5.1 .2 for the graph of \psi . Then for all x \in D,

-|x| \leq \psi(x) \leq|x|,

and so \lim _{x \rightarrow 0} \psi(x)=0 by the squeeze theorem.

Definition

Let D \subset \mathbb{R} and f: D \rightarrow \mathbb{R} . We say f is bounded if there exists a real number B such that |f(x)| \leq B for all x \in D.

Exercise \PageIndex{12}

Suppose f: \mathbb{R} \rightarrow \mathbb{R} is bounded. Show that \lim _{x \rightarrow 0} x f(x)=0.


This page titled 5.1: Limits is shared under a CC BY-NC-SA 1.0 license and was authored, remixed, and/or curated by Dan Sloughter via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?