Skip to main content
Mathematics LibreTexts

2.2.E: Problems on Natural Numbers and Induction (Exercises)

  • Page ID
    22254
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Exercise \(\PageIndex{1}\)

    Complete the missing details in Examples \((\mathrm{a}),(\mathrm{b}),\) and \((\mathrm{d})\).

    Exercise \(\PageIndex{2}\)

    Prove Theorem 2 in detail.

    Exercise \(\PageIndex{3}\)

    Suppose \(x_{k}<y_{k}, k=1,2, \ldots,\) in an ordered field. Prove by induction on \(n\) that
    (a) \(\sum_{k=1}^{n} x_{k}<\sum_{k=1}^{n} y_{k}\)
    (b) if all \(x_{k}, y_{k}\) are greater than zero, then
    \[
    \prod_{k=1}^{n} x_{k}<\prod_{k=1}^{n} y_{k}
    \]

    Exercise \(\PageIndex{4}\)

    Prove by induction that
    (i) \(1^{n}=1\);
    (ii) \(a<b \Rightarrow a^{n}<b^{n}\) if \(a>0\).
    Hence deduce that
    (iii) \(0 \leq a^{n}<1\) if \(0 \leq a<1\);
    (iv) \(a^{n}<b^{n} \Rightarrow a<b\) if \(b>0 ;\) proof by contradiction.

    Exercise \(\PageIndex{5}\)

    Prove the Bernoulli inequalities: For any element \(\varepsilon\) of an ordered field,
    (i) \((1+\varepsilon)^{n} \geq 1+n \varepsilon\) if \(\varepsilon>-1\);
    (ii) \((1-\varepsilon)^{n} \geq 1-n \varepsilon\) if \(\varepsilon<1 ; n=1,2,3, \ldots\)

    Exercise \(\PageIndex{6}\)

    For any field elements \(a, b\) and natural numbers \(m, n,\) prove that
    \[
    \begin{array}{ll}{\text { (i) } a^{m} a^{n}=a^{m+n} ;} & {\text { (ii) }\left(a^{m}\right)^{n}=a^{m n}} \\ {\text { (iii) }(a b)^{n}=a^{n} b^{n} ;} & {\text { (iv) }(m+n) a=m a+n a} \\ {\text { (v) } n(m a)=(n m) \cdot a ;} & {\text { (vi) } n(a+b)=n a+n b}\end{array}
    \]
    [Hint: For problems involving two natural numbers, fix \(m\) and use induction on \(n ]\).

    Exercise \(\PageIndex{7}\)

    Prove that in any field,
    \[
    a^{n+1}-b^{n+1}=(a-b) \sum_{k=0}^{n} a^{k} b^{n-k}, \quad n=1,2,3, \ldots
    \]
    Hence for \(r \neq 1\)
    \[
    \sum_{k=0}^{n} a r^{k}=a \frac{1-r^{n+1}}{1-r}
    \]
    (sum of \(n\) terms of a geometric series).

    Exercise \(\PageIndex{8}\)

    For \(n>0\) define
    \[
    \left(\begin{array}{l}{n} \\ {k}\end{array}\right)=\left\{\begin{array}{ll}{\frac{n !}{k !(n-k) !},} & {0 \leq k \leq n} \\ {0,} & {\text { otherwise }}\end{array}\right.
    \]
    Verify Pascal's law,
    \[
    \left(\begin{array}{l}{n+1} \\ {k+1}\end{array}\right)=\left(\begin{array}{l}{n} \\ {k}\end{array}\right)+\left(\begin{array}{c}{n} \\ {k+1}\end{array}\right).
    \]
    Then prove by induction on \(n\) that
    (i) \((\forall k | 0 \leq k \leq n)\left(\begin{array}{l}{n} \\ {k}\end{array}\right) \in N ;\) and
    (ii) for any field elements \(a\) and \(b\),
    \[
    (a+b)^{n}=\sum_{k=0}^{n}\left(\begin{array}{l}{n} \\ {k}\end{array}\right) a^{k} b^{n-k}, \quad n \in N \text { (the binomial theorem). }
    \]
    What value must \(0^{0}\) take for (ii) to hold for all \(a\) and \(b ?\)

    Exercise \(\PageIndex{9}\)

    Show by induction that in an ordered field \(F\) any finite sequence \(x_{1}, \ldots, x_{n}\) has a largest and a least term (which need not be \(x_{1}\) or \(x_{n} ) .\) Deduce that all of \(N\) is an infinite set, in any ordered field.

    Exercise \(\PageIndex{10}\)

    Prove in \(E^{1}\) that
    (i) \(\sum_{k=1}^{n} k=\frac{1}{2} n(n+1)\);
    (ii) \(\sum_{k=1}^{n} k^{2}=\frac{1}{6} n(n+1)(2 n+1)\);
    (iii) \(\sum_{k=1}^{n} k^{3}=\frac{1}{4} n^{2}(n+1)^{2}\);
    (iv) \(\sum_{k=1}^{n} k^{4}=\frac{1}{30} n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)\).


    2.2.E: Problems on Natural Numbers and Induction (Exercises) is shared under a CC BY 1.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?