2.2.E: Problems on Natural Numbers and Induction (Exercises)
- Page ID
- 22254
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Complete the missing details in Examples \((\mathrm{a}),(\mathrm{b}),\) and \((\mathrm{d})\).
Prove Theorem 2 in detail.
Suppose \(x_{k}<y_{k}, k=1,2, \ldots,\) in an ordered field. Prove by induction on \(n\) that
(a) \(\sum_{k=1}^{n} x_{k}<\sum_{k=1}^{n} y_{k}\)
(b) if all \(x_{k}, y_{k}\) are greater than zero, then
\[
\prod_{k=1}^{n} x_{k}<\prod_{k=1}^{n} y_{k}
\]
Prove by induction that
(i) \(1^{n}=1\);
(ii) \(a<b \Rightarrow a^{n}<b^{n}\) if \(a>0\).
Hence deduce that
(iii) \(0 \leq a^{n}<1\) if \(0 \leq a<1\);
(iv) \(a^{n}<b^{n} \Rightarrow a<b\) if \(b>0 ;\) proof by contradiction.
Prove the Bernoulli inequalities: For any element \(\varepsilon\) of an ordered field,
(i) \((1+\varepsilon)^{n} \geq 1+n \varepsilon\) if \(\varepsilon>-1\);
(ii) \((1-\varepsilon)^{n} \geq 1-n \varepsilon\) if \(\varepsilon<1 ; n=1,2,3, \ldots\)
For any field elements \(a, b\) and natural numbers \(m, n,\) prove that
\[
\begin{array}{ll}{\text { (i) } a^{m} a^{n}=a^{m+n} ;} & {\text { (ii) }\left(a^{m}\right)^{n}=a^{m n}} \\ {\text { (iii) }(a b)^{n}=a^{n} b^{n} ;} & {\text { (iv) }(m+n) a=m a+n a} \\ {\text { (v) } n(m a)=(n m) \cdot a ;} & {\text { (vi) } n(a+b)=n a+n b}\end{array}
\]
[Hint: For problems involving two natural numbers, fix \(m\) and use induction on \(n ]\).
Prove that in any field,
\[
a^{n+1}-b^{n+1}=(a-b) \sum_{k=0}^{n} a^{k} b^{n-k}, \quad n=1,2,3, \ldots
\]
Hence for \(r \neq 1\)
\[
\sum_{k=0}^{n} a r^{k}=a \frac{1-r^{n+1}}{1-r}
\]
(sum of \(n\) terms of a geometric series).
For \(n>0\) define
\[
\left(\begin{array}{l}{n} \\ {k}\end{array}\right)=\left\{\begin{array}{ll}{\frac{n !}{k !(n-k) !},} & {0 \leq k \leq n} \\ {0,} & {\text { otherwise }}\end{array}\right.
\]
Verify Pascal's law,
\[
\left(\begin{array}{l}{n+1} \\ {k+1}\end{array}\right)=\left(\begin{array}{l}{n} \\ {k}\end{array}\right)+\left(\begin{array}{c}{n} \\ {k+1}\end{array}\right).
\]
Then prove by induction on \(n\) that
(i) \((\forall k | 0 \leq k \leq n)\left(\begin{array}{l}{n} \\ {k}\end{array}\right) \in N ;\) and
(ii) for any field elements \(a\) and \(b\),
\[
(a+b)^{n}=\sum_{k=0}^{n}\left(\begin{array}{l}{n} \\ {k}\end{array}\right) a^{k} b^{n-k}, \quad n \in N \text { (the binomial theorem). }
\]
What value must \(0^{0}\) take for (ii) to hold for all \(a\) and \(b ?\)
Show by induction that in an ordered field \(F\) any finite sequence \(x_{1}, \ldots, x_{n}\) has a largest and a least term (which need not be \(x_{1}\) or \(x_{n} ) .\) Deduce that all of \(N\) is an infinite set, in any ordered field.
Prove in \(E^{1}\) that
(i) \(\sum_{k=1}^{n} k=\frac{1}{2} n(n+1)\);
(ii) \(\sum_{k=1}^{n} k^{2}=\frac{1}{6} n(n+1)(2 n+1)\);
(iii) \(\sum_{k=1}^{n} k^{3}=\frac{1}{4} n^{2}(n+1)^{2}\);
(iv) \(\sum_{k=1}^{n} k^{4}=\frac{1}{30} n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)\).