2.7.E: Problems on Upper and Lower Limits of Sequences in E∗ (Exercises)
\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}
\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}
( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}
\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}
\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}
\newcommand{\inner}[2]{\langle #1, #2 \rangle}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\id}{\mathrm{id}}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\kernel}{\mathrm{null}\,}
\newcommand{\range}{\mathrm{range}\,}
\newcommand{\RealPart}{\mathrm{Re}}
\newcommand{\ImaginaryPart}{\mathrm{Im}}
\newcommand{\Argument}{\mathrm{Arg}}
\newcommand{\norm}[1]{\| #1 \|}
\newcommand{\inner}[2]{\langle #1, #2 \rangle}
\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}
\newcommand{\vectorA}[1]{\vec{#1}} % arrow
\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow
\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vectorC}[1]{\textbf{#1}}
\newcommand{\vectorD}[1]{\overrightarrow{#1}}
\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}
\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}
\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}
\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}Complete the missing details in the proofs of Theorems 2 and 3, Corollary 1, and Examples (a) and (b).
State and prove the analogues of Theorems 1 and 2 and Corollary 2 for
\underline{\lim} x_{n}.
Find \overline{\lim } x_{n} and \underline{\lim} x_{n} if
(a) x_{n}=c (constant);
(b) x_{n}=-n ;
(c) x_{n}=n ; and
(d) x_{n}=(-1)^{n} n-n
Does \lim x_{n} exist in each case?
\Rightarrow 4 . A sequence \left\{x_{n}\right\} is said to cluster at q \in E^{*}, and q is called its cluster point, iff each G_{q} contains x_{n} for infinitely many values of n.
Show that both \underline{L} and \overline{L} are cluster points (\underline{L} \text { the least and } \overline{L} \text { the } largest).
[Hint: Use Theorem 2 and its analogue for \underline{L}.
To show that no p<\underline{L} (or q>\overline{L} ) is a cluster point, assume the opposite and find a contradiction to Corollary 2.]
\Rightarrow 5 . Prove that
(i) \overline{\lim} \left(-x_{n}\right)=-\underline{\lim} x_{n} and
(ii) \overline{\lim} \left(a x_{n}\right)=a \cdot \overline{\lim } x_{n} if 0 \leq a<+\infty.
Prove that
\overline{\lim } x_{n}<+\infty\left(\underline{\lim} x_{n}>-\infty\right)
iff \left\{x_{n}\right\} is bounded above (below) in E^{1}.
Prove that if \left\{x_{n}\right\} and \left\{y_{n}\right\} are bounded in E^{1}, then
\overline{\lim } x_{n}+\overline{\lim } y_{n} \geq \overline{\lim }\left(x_{n}+y_{n}\right) \geq \overline{\lim } x_{n}+\underline{\lim} y_{n} \geq \underline{\lim} (x_{n} + y_{n}) \geq \underline{\lim} x_{n} + \underline{\lim} y_{n}.
[Hint: Prove the first inequality and then use that and Problem 5(\mathrm{i}) for the others.]
\Rightarrow 8 . Prove that if p=\lim x_{n} in E^{1}, then
\underline{\lim} (x_{n} + y_{n}) = p + \underline{\lim} y_{n};
similarly for \overline{L}.
\Rightarrow 9 . Prove that if \left\{x_{n}\right\} is monotone, then \lim x_{n} exists i n E^{*} . Specifically, if \left\{x_{n}\right\} \uparrow, then
\lim x_{n}=\sup _{n} x_{n},
and if \left\{x_{n}\right\} \downarrow, then
\lim x_{n}=\inf _{n} x_{n}.
\Rightarrow 10 . Prove that
(i) if lim x_{n}=+\infty and (\forall n) x_{n} \leq y_{n}, then also \lim y_{n}=+\infty, and
(ii) if \lim x_{n}=-\infty and (\forall n) y_{n} \leq x_{n}, then also \lim y_{n}=-\infty.
Prove that if x_{n} \leq y_{n} for all n, then
\underline{\lim} x_{n} \leq \underline{\lim} y_{n} \text{ and } \overline{\lim} x_{n} \leq \overline{\lim} y_{n}.