Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

1.5: Roots of Complex Numbers

( \newcommand{\kernel}{\mathrm{null}\,}\)

Recall that if z=x+iy is a nonzero complex number, then it can be written in polar form as

z=r(cosθ+isinθ)

where r=x2+y2 and θ is the angle, in radians, from the positive x-axis to the ray connecting the origin to the point z.

Now, de Moivre’s formula establishes that if z=r(cosθ+isinθ) and n is a positive integer, then

zn=rn(cosnθ+isinnθ)

Let w be a complex number. Using de Moivre’s formula will help us to solve the equation

zn=w

for z when w is given.

Suppose that w=r(cosθ+isinθ) and z=ρ(cosψ+isinψ) Then de Moivre’s formula gives

zn=ρn(cosnψ+isinnψ)

It follows that

ρn=r=|w|

by uniqueness of the polar representation and

nΨ=θ+k(2π),

where k is some integer. Thus

z=nr[cos(θn+2kπn)+isin(θn+2kπn)].

Each value of k=0,1,2,,n1 gives a different value of z. Any other value of k merely repeats one of the values of z corresponding to k=0,1,2,,n1. Thus there are exactly nth roots of a nonzero complex number.

Using Euler’s formula:

eiθ=cosθ+isinθ,

the complex number \(z=r(cos\theta +isin\theta) \\) can also be written in exponential form as

z=reiθ

Thus, the nth roots of a nonzero complex number z0 can also be expressed as

z=nrexp[i(θn+2kπn)]

where k=0,1,2,...,n1.

The applet below shows a geometrical representation of the nth roots of a complex number, up to n=10. Drag the red point around to change the value of z or drag the sliders.

Code

Enter the following script in GeoGebra to explore it yourself and make your own version. The symbol # indicates comments.

#Complex number
    
Z = 1 + ί

#Modulus of Z

r = abs(Z)

#Angle of Z

theta = atan2(y(Z), x(Z))

#Number of roots

n = Slider(2, 10, 1, 1, 150, false, true, false, false)

#Plot n-roots

nRoots = Sequence(r^(1 / n) * exp(  ί * ( theta / n + 2 * pi * k / n ) ), k, 0, n-1)

Exercise 1.5.1

From the exponential form (1) of the roots, show that all the nth roots lie on the circle |z|=nr about the origin and are equally spaced every 2πn radians, starting with argument θn.


This page titled 1.5: Roots of Complex Numbers is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by Juan Carlos Ponce Campuzano.

Support Center

How can we help?