Skip to main content
Mathematics LibreTexts

13.2: Laplace transform

  • Page ID
    6552
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Definition

    The Laplace transform of a function \(f(t)\) is defined by the integral

    \[\mathcal{L} (f;s) = \int_{0}^{\infty} e^{-st} f(t)\ dt, \nonumber \]

    for those \(s\) where the integral converges. Here \(s\) is allowed to take complex values.

    Important note

    The Laplace transform is only concerned with \(f(t)\) for \(t \ge 0\). Generally, speaking we can require \(f(t) = 0\) for \(t < 0\).

    Standard notation

    Where the notation is clear, we will use an upper case letter to indicate the Laplace transform, e.g, \(\mathcal{L} (f; s) = F(s)\).

    The Laplace transform we defined is sometimes called the one-sided Laplace transform. There is a two-sided version where the integral goes from \(-\infty\) to \(\infty\).

    First examples

    Let’s compute a few examples. We will also put these results in the Laplace transform table at the end of these notes.

    Example \(\PageIndex{1}\)

    Let \(f(t) = e^{at}\). Compute \(F(s) = \mathcal{L} (f; s)\) directly. Give the region in the complex \(s\)-plane where the integral converges.

    \[\begin{array} {rcl} {\mathcal{L} (e^{at} ; s)} & = & {\int_{0}^{\infty} e^{at} e^{-st}\ dt = \int_{0}^{\infty} e^{(a - s) t} \ dt = \dfrac{e^{(a - s) t}}{a - s} \vert_{0}^{\infty}} \\ {rcl} {} & = & {= \begin{cases} \dfrac{1}{s - a} & \text{ if Re} (s) > \text{Re} (a) \\ \text{divergent} & \text{ otherwise} \end{cases}} \end{array} \nonumber \]

    The last formula comes from plugging \(\infty\) into the exponential. This is 0 if \(\text{Re} (a - s) < 0\) and undefined otherwise.

    Example \(\PageIndex{2}\)

    Let \(f(t) = b\). Compute \(F(s) = \mathcal{L} (f; s)\) directly. Give the region in the complex \(s\)-plane where the integral converges.

    \[\begin{array} {rcl} {\mathcal{L} (b ; s)} & = & {\int_{0}^{\infty} be^{-st}\ dt = \dfrac{be^{- st}}{- s} \vert_{0}^{\infty}} \\ {rcl} {} & = & {= \begin{cases} \dfrac{b}{s} & \text{ if Re} (s) > 0 \\ \text{divergent} & \text{ otherwise} \end{cases}} \end{array} \nonumber \]

    The last formula comes from plugging \(\infty\) into the exponential. This is 0 if \(\text{Re} (-s) < 0\) and undefined otherwise.

    Example \(\PageIndex{3}\)

    Let \(f(t) = t\). Compute \(F(s) = \mathcal{L} (f;s)\) directly. Give the region in the complex \(s\)-plane where the integral converges.

    \[\begin{array} {rcl} {\mathcal{L} (t ; s)} & = & {\int_{0}^{\infty} te^{-st}\ dt = \dfrac{te^{- st}}{- s} - \dfrac{e^{- st}}{s^2} \vert_{0}^{\infty}} \\ {rcl} {} & = & {= \begin{cases} \dfrac{1}{s^2} & \text{ if Re} (s) > 0 \\ \text{divergent} & \text{ otherwise} \end{cases}} \end{array} \nonumber \]

    Example \(\PageIndex{4}\)

    Compute

    \[\mathcal{L} (\cos (\omega t)). \nonumber \]

    Solution

    We use the formula

    \[\cos (\omega t) = \dfrac{e^{i\omega t} + e^{-i \omega t}}{2}. \nonumber \]

    So,

    \[\mathcal{L} (\cos (\omega t); s) = \dfrac{1/(s - i\omega) + 1/(s + i\omega)}{2} = \dfrac{s}{s^2 + \omega^2}. \nonumber \]

    Connection to Fourier transform

    The Laplace and Fourier transforms are intimately connected. In fact, the Laplace transform is often called the Fourier-Laplace transform. To see the connection we’ll start with the Fourier transform of a function \(f(t)\).

    \[\hat{f} (\omega) = \int_{-\infty}^{\infty} f(t) e^{-i \omega t}\ dt. \nonumber \]

    If we assume \(f(t) = 0\) for \(t < 0\), this becomes

    \[\hat{f} (\omega) = \int_{0}^{\infty} f(t) e^{-i \omega t}\ dt. \nonumber \]

    Now if \(s = i\omega\) then the Laplace transform is

    \[\mathcal{L}(f; s) = \mathcal{L} (f; i\omega) = \int_{0}^{\infty} f(t) e^{-i \omega t}\ dt. \nonumber \]

    Comparing these two equations we see that \(\hat{f} (\omega) = \mathcal{L} (f; i \omega)\). We see the transforms are basically the same things using different notation –at least for functions that are 0 for \(t < 0\).


    This page titled 13.2: Laplace transform is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Jeremy Orloff (MIT OpenCourseWare) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.