2.4.E: Problems on Upper and Lower Bounds (Exercises)
- Page ID
- 22255
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Complete the proofs of Theorem 2 and Corollaries 1 and 2 for infima.
Prove the last clause of Note \(4 .\)
Prove that \(F\) is complete iff each nonvoid left-bounded set in \(F\) has an infimum.
Prove that if \(A_{1}, A_{2}, \ldots, A_{n}\) are right bounded (left bounded) in \(F,\) so is
\[
\bigcup_{k=1}^{n} A_{k}
\]
Prove that if \(A=(a, b)\) is an open interval \((a<b),\) then
\[
a=\inf A \text { and } b=\sup A.
\]
In an ordered field \(F,\) let \(\emptyset \neq A \subset F .\) Let \(c \in F\) and let \(c A\) denote the set of all products \(c x(x \in A) ;\) i.e.,
\[
c A=\{c x | x \in A\}.
\]
\[
\begin{array}{l}{\text { (i) if } c \geq 0 \text { , then }} \\ {\qquad \begin{array}{l}{\sup (c A)=c \cdot \sup A \text { and } \inf (c A)=c \cdot \inf A} \\ {\text { (ii) if } c<0 \text { , then }} \\ {\qquad \sup (c A)=c \cdot \inf A \text { and } \inf (c A)=c \cdot \sup A}\end{array}}\end{array}
\]
In both cases, assume that the right-side sup \(A\) (respectively, inf \(A )\) exists.
From Problem 5\((\text { ii })\) with \(c=-1,\) obtain a new proof of Theorem 1.
[Hint: If \(A\) is left bounded, show that \((-1) A\) is right bounded and use its supremum. \(]\)
Let \(A\) and \(B\) be subsets of an ordered field \(F .\) Assuming that the required lub and glb exist in \(F,\) prove that
(i) if \((\forall x \in A)(\forall y \in B) x \leq y,\) then \(\sup A \leq \inf B\);
(ii) if \((\forall x \in A)(\exists y \in B) x \leq y,\) then \(\sup A \leq \sup B\);
(iii) if \((\forall y \in B)(\exists x \in A) x \leq y,\) then \(\inf A \leq \inf B\).
\([\text { Hint for }(\mathrm{i}) : \text { By Corollary } 1,(\forall y \in B) \sup A \leq y, \text { so } \sup A \leq \inf B .(\text { Why? })]\)
For any two subsets \(A\) and \(B\) of an ordered field \(F,\) let \(A+B\) denote the set of all sums \(x+y\) with \(x \in A\) and \(y \in B ;\) i.e.,
\[
A+B=\{x+y | x \in A, y \in B\}.
\]
Prove that if \(\sup A=p\) and \(\sup B=q\) exist in \(F,\) then
\[
p+q=\sup (A+B);
\]
similarly for infima.
[Hint for sup: By Theorem \(2,\) we must show that
(i) \((\forall x \in A)(\forall y \in B) x+y \leq p+q(\text { which is easy })\) and
(ii')\((\forall \varepsilon>0)(\exists x \in A)(\exists y \in B) x+y>(p+q)-\varepsilon\).
Fix any \(\varepsilon>0 .\) By Theorem 2,
\[
(\exists x \in A)(\exists y \in B) \quad p-\frac{\varepsilon}{2}<x \text { and } q-\frac{\varepsilon}{2}<y .(\mathrm{Why} ?)
\]
Then
\[
x+y>\left(p-\frac{\varepsilon}{2}\right)+\left(q-\frac{\varepsilon}{2}\right)=(p+q)-\varepsilon,
\]
as required. \(]\)
In Problem 8 let \(A\) and \(B\) consist of positive elements only, and let
\[
A B=\{x y | x \in A, y \in B\}.
\]
Prove that if \(\sup A=p\) and \(\sup B=q\) exist in \(F,\) then
\[
p q=\sup (A B);
\]
similarly for infima.
[Hint: Use again Theorem 2\(\left(\mathrm{ii}^{\prime}\right) .\) For \(\sup (A B),\) take
\[
0<\varepsilon<(p+q) \min \{p, q\}
\]
and
\[
x>p-\frac{\varepsilon}{p+q} \text { and } y>q-\frac{\varepsilon}{p+q};
\]
show that
\[
x y>p q-\varepsilon+\frac{\varepsilon^{2}}{(p+q)^{2}}>p q-\varepsilon.
\]
For inf \((A B),\) let \(s=\inf B\) and \(r=\inf A ;\) choose \(d<1,\) with
\[
0<d<\frac{\varepsilon}{1+r+s}.
\]
Now take \(x \in A\) and \(y \in B\) with
\[
x<r+d \text { and } y<s+d,
\]
and show that
\[
x y<r s+\varepsilon.
\]
Explain!
Prove that
(i) if \((\forall \varepsilon>0) a \geq b-\varepsilon,\) then \(a \geq b\);
(ii) if \((\forall \varepsilon>0) a \leq b+\varepsilon,\) then \(a \leq b\).
Prove the principle of nested intervals: If \(\left[a_{n}, b_{n}\right]\) are closed intervals in a complete ordered field \(F,\) with
\[
\left[a_{n}, b_{n}\right] \supseteq\left[a_{n+1}, b_{n+1}\right], \quad n=1,2, \ldots
\]
then
\[
\bigcap_{n=1}^{\infty}\left[a_{n}, b_{n}\right] \neq \emptyset.
\]
[Hint: Let
\[
A=\left\{a_{1}, a_{2}, \ldots, a_{n}, \ldots\right\}.
\]
Show that \(A\) is bounded above by each \(b_{n}\).
Let \(p=\sup A .\) (Does it exist?)
Show that
\[
(\forall n) \quad a_{n} \leq p \leq b_{n},
\]
i.e.,
\[
p \in\left[a_{n}, b_{n}\right] . ]
\]
Prove that each bounded set \(A \neq \emptyset\) in a complete field \(F\) is contained in a smallest closed interval \([a, b]\) (so \([a, b]\) is contained in any other \([c, d] \supseteq A )\).
Show that this fails if "closed" is replaced by "open."
\([\text { Hint: Take } a=\inf A, b=\sup A]\).
Prove that if \(A\) consists of positive elements only, then \(q=\sup A\) iff
(i) \((\forall x \in A) x \leq q\) and
(ii) \((\forall d>1)(\exists x \in A) q / d<x\).
[Hint: Use Theorem 2. \(]\)