Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

5.2: Derivatives of Extended-Real Functions

( \newcommand{\kernel}{\mathrm{null}\,}\)

For a while (in ยงยง2 and 3), we limit ourselves to extended-real functions. Below, ๐‘“ and ๐‘” are real or extended real (f, ๐‘” :๐ธ1 โ†’๐ธโˆ—). We assume, however, that they are not constantly infinite on any interval (๐‘Ž,๐‘),๐‘Ž <๐‘.

Lemma 5.2.1

If ๐‘“โ€ฒโก(๐‘) >0 at some ๐‘ โˆˆ๐ธ1, then

๐‘ฅ<๐‘<๐‘ฆ(5.2.1)

implies

๐‘“โก(๐‘ฅ)<๐‘“โก(๐‘)<๐‘“โก(๐‘ฆ)(5.2.2)

for all ๐‘ฅ,๐‘ฆ in a sufficiently small globe ๐บ๐‘โก(๐›ฟ) =(๐‘ โˆ’๐›ฟ,๐‘ +๐›ฟ).

Similarly, if ๐‘“โ€ฒโก(๐‘) <0, then ๐‘ฅ <๐‘ <๐‘ฆ implies ๐‘“โก(๐‘ฅ) >๐‘“โก(๐‘) >๐‘“โก(๐‘ฆ) for ๐‘ฅ,๐‘ฆ in some ๐บ๐‘โก(๐›ฟ).

Proof

If ๐‘“โ€ฒโก(๐‘) >0, the "0" case in Definition 1 of ยง1, is excluded, so

๐‘“โ€ฒโก(๐‘)=lim๐‘ฅโ†’๐‘โกฮ”โข๐‘“ฮ”โข๐‘ฅ>0.(5.2.3)

Hence we must also have ฮ”โข๐‘“โก/ฮ”โข๐‘ฅ >0 for ๐‘ฅ in some ๐บ๐‘โก(๐›ฟ).

It follows that ฮ”โข๐‘“ and ฮ”โข๐‘ฅ have the same sign in ๐บ๐‘โก(๐›ฟ); i.e.,

๐‘“โก(๐‘ฅ)โˆ’๐‘“โก(๐‘)>0 if ๐‘ฅ>๐‘ and ๐‘“โก(๐‘ฅ)โˆ’๐‘“โก(๐‘)<0 if ๐‘ฅ<๐‘.(5.2.4)

(This implies ๐‘“โก(๐‘) โ‰ ยฑโˆž. Why? Hence

๐‘ฅ<๐‘<๐‘ฆโŸน๐‘“โก(๐‘ฅ)<๐‘“โก(๐‘)<๐‘“โก(๐‘ฆ),(5.2.5)

as claimed; similarly in case ๐‘“โ€ฒโก(๐‘) <0. โ—ป

Corollary 5.2.1

If ๐‘“โก(๐‘) is the maximum or minimum value of ๐‘“โก(๐‘ฅ) for ๐‘ฅ in some ๐บ๐‘โก(๐›ฟ), then ๐‘“โ€ฒโก(๐‘) =0; i.e., ๐‘“ has a zero derivative, or none at all, at ๐‘.

For, by Lemma 1, ๐‘“โ€ฒโก(๐‘) โ‰ 0 excludes a maximum or minimum at ๐‘. (Why?)

Note 1. Thus ๐‘“โ€ฒโก(๐‘) =0 is a necessary condition for a local maximum or minimum at ๐‘. It is insufficient, however. For example, if ๐‘“โก(๐‘ฅ) =๐‘ฅ3,๐‘“ has no maxima or minima at all, yet ๐‘“โ€ฒโก(0) =0. For sufficient conditions, see ยง6.

Figure 22 illustrates these facts at the points ๐‘2,๐‘3,โ€ฆ,๐‘11. Note that in Figure 22, the isolated points ๐‘ƒ,๐‘„,๐‘… belong to the graph.

Geometrically, ๐‘“โ€ฒโก(๐‘) =0 means that the tangent at ๐‘ is horizontal, or that a two-sided tangent does not exist at ๐‘.

Theorem 5.2.1

Let ๐‘“ :๐ธ1 โ†’๐ธโˆ— be relatively continuous on an interval [๐‘Ž,๐‘], with ๐‘“โ€ฒ โ‰ 0 on (๐‘Ž,๐‘). Then ๐‘“ is strictly monotone on [๐‘Ž,๐‘], and ๐‘“โ€ฒ is signconstant there (possibly 0 at a and b), with ๐‘“โ€ฒ โ‰ฅ0 if ๐‘“ โ†‘, and ๐‘“โ€ฒ โ‰ค0 if ๐‘“ โ†“.

Proof

By Theorem 2 of Chapter 4, ยง8, ๐‘“ attains a least value ๐‘š, and a largest value ๐‘€, at some points of [๐‘Ž,๐‘]. However, neither can occur at an interior point ๐‘ โˆˆ(๐‘Ž,๐‘), for, by Corollary 1, this would imply ๐‘“โ€ฒโก(๐‘) =0, contrary to our assumption.

Screen Shot 2019-06-26 at 1.54.42 PM.png

Thus ๐‘€ =๐‘“โก(๐‘Ž) or ๐‘€ =๐‘“โก(๐‘); for the moment we assume ๐‘€ =๐‘“โก(๐‘) and ๐‘š =๐‘“โก(๐‘Ž). We must have ๐‘š <๐‘€, for ๐‘š =๐‘€ would make ๐‘“ constant on [๐‘Ž,๐‘], implying ๐‘“โ€ฒ =0. Thus ๐‘š =๐‘“โก(๐‘Ž) <๐‘“โก(๐‘) =๐‘€.

Now let ๐‘Ž โ‰ค๐‘ฅ <๐‘ฆ โ‰ค๐‘. Applying the previous argument to each of the intervals [๐‘Ž,๐‘ฅ],[๐‘Ž,๐‘ฆ],[๐‘ฅ,๐‘ฆ], and [๐‘ฅ,๐‘] (now using that ๐‘š =๐‘“โก(๐‘Ž) <๐‘“โก(๐‘) =๐‘€), we find that

๐‘“โก(๐‘Ž)โ‰ค๐‘“โก(๐‘ฅ)<๐‘“โก(๐‘ฆ)โ‰ค๐‘“โก(๐‘). (Why?) (5.2.6)

Thus ๐‘Ž โ‰ค๐‘ฅ <๐‘ฆ โ‰ค๐‘ implies ๐‘“โก(๐‘ฅ) <๐‘“โก(๐‘ฆ); i.e., ๐‘“ increases on [๐‘Ž,๐‘]. Hence ๐‘“โ€ฒ cannot be negative at any ๐‘ โˆˆ[๐‘Ž,๐‘], for, otherwise, by Lemma 1, ๐‘“ would decrease at ๐‘. Thus ๐‘“โ€ฒ โ‰ฅ0 on [๐‘Ž,๐‘].

In the case ๐‘€ =๐‘“โก(๐‘Ž) >๐‘“โก(๐‘) =๐‘š, we would obtain ๐‘“โ€ฒ โ‰ค0. โ—ป

Caution: The function ๐‘“ may increase or decrease at ๐‘ even if ๐‘“โ€ฒโก(๐‘) =0.
See Note 1.

Corollary 5.2.2 (Rolle's theorem)

If : ๐ธ1 โ†’๐ธโˆ— is relatively continuous on [๐‘Ž,๐‘] and if ๐‘“โก(๐‘Ž) =๐‘“โก(๐‘), then ๐‘“โ€ฒโก(๐‘) =0 for at least one interior point ๐‘ โˆˆ(๐‘Ž,๐‘).

For, if ๐‘“โ€ฒ โ‰ 0 on all of (๐‘Ž,๐‘), then by Theorem 1, ๐‘“ would be strictly monotone on [๐‘Ž,๐‘], so the equality ๐‘“โก(๐‘Ž) =๐‘“โก(๐‘) would be impossible.

Figure 22 illustrates this on the intervals [๐‘2,๐‘4] and [๐‘4,๐‘6], with ๐‘“โ€ฒโก(๐‘3) = ๐‘“โ€ฒโก(๐‘5) =0. A discontinuity at 0 causes an apparent failure on [0,๐‘2].

Note 2. Theorem 1 and Corollary 2 hold even if ๐‘“โก(๐‘Ž) and ๐‘“โก(๐‘) are infinite, if continuity is interpreted in the sense of the metric ๐œŒโ€ฒ of Problem 5 in Chapter 3, ยง11. (Weierstrass' Theorem 2 of Chapter 4, ยง8 applies to (๐ธโˆ—,๐œŒโ€ฒ), with the same proof.)

Theorem 5.2.2 (Cauchy's law of the mean)

Let the functions ๐‘“,๐‘” :๐ธ1 โ†’๐ธโˆ— be relatively continuous and finite on [๐‘Ž,๐‘] and have derivatives on (๐‘Ž,๐‘), with ๐‘“โ€ฒ and ๐‘”โ€ฒ never both infinite at the same point ๐‘ โˆˆ(๐‘Ž,๐‘). Then

๐‘”โ€ฒโก(๐‘ž)โข[๐‘“โก(๐‘)โˆ’๐‘“โก(๐‘Ž)]=๐‘“โ€ฒโก(๐‘ž)โข[๐‘”โก(๐‘)โˆ’๐‘”โก(๐‘Ž)] for at least one ๐‘žโˆˆ(๐‘Ž,๐‘).(5.2.7)

Proof

Let ๐ด =๐‘“โก(๐‘) โˆ’๐‘“โก(๐‘Ž) and ๐ต =๐‘”โก(๐‘) โˆ’๐‘”โก(๐‘Ž). We must show that ๐ดโข๐‘”โ€ฒโก(๐‘ž) =๐ตโข๐‘“โ€ฒโก(๐‘ž) for some ๐‘ž โˆˆ(๐‘Ž,๐‘). For this purpose, consider the function โ„Ž =๐ดโข๐‘” โˆ’๐ตโข๐‘“. It is relatively continuous and finite on [๐‘Ž,๐‘], as are ๐‘” and ๐‘“. Also,

โ„Žโก(๐‘Ž)=๐‘“โก(๐‘)โข๐‘”โก(๐‘Ž)โˆ’๐‘”โก(๐‘)โข๐‘“โก(๐‘Ž)=โ„Žโก(๐‘). (Verify!) (5.2.8)

Thus by Corollary 2, โ„Žโ€ฒโก(๐‘ž) =0 for some ๐‘ž โˆˆ(๐‘Ž,๐‘). Here, by Theorem 4 of ยง1, โ„Žโ€ฒ =(๐ดโข๐‘”โˆ’๐ตโข๐‘“)โ€ฒ =๐ดโข๐‘”โ€ฒ โˆ’๐ตโข๐‘“โ€ฒ. (This is legitimate, for, by assumption, ๐‘“โ€ฒ and ๐‘”โ€ฒ never both become infinite, so no indeterminate limits occur.) Thus โ„Žโ€ฒโก(๐‘ž) =๐ดโข๐‘”โ€ฒโก(๐‘ž) โˆ’๐ตโข๐‘“โ€ฒโก(๐‘ž) =0, and (1) follows. โ—ป

Corollary 5.2.3 (Lagrange's law of the mean)

If ๐‘“ :๐ธ1 โ†’๐ธ1 is relatively continuous on [๐‘Ž,๐‘] with a derivative on (๐‘Ž,๐‘), then

๐‘“โก(๐‘)โˆ’๐‘“โก(๐‘Ž)=๐‘“โ€ฒโก(๐‘ž)โข(๐‘โˆ’๐‘Ž) for at least one ๐‘žโˆˆ(๐‘Ž,๐‘).(5.2.9)

Proof

Take ๐‘”โก(๐‘ฅ) =๐‘ฅ in Theorem 2, so ๐‘”โ€ฒ =1 on ๐ธ1.โ—ป

Note 3. Geometrically,

๐‘“โก(๐‘)โˆ’๐‘“โก(๐‘Ž)๐‘โˆ’๐‘Ž(5.2.10)

is the slope of the secant through (๐‘Ž,๐‘“โก(๐‘Ž)) and (๐‘,๐‘“โก(๐‘)), and ๐‘“โ€ฒโก(๐‘ž) is the slope of the tangent line at ๐‘ž. Thus Corollary 3 states that the secant is parallel to the tangent at some intermediate point ๐‘ž; see Figure 23. Theorem 2 states the same for curves given parametrically: ๐‘ฅ =๐‘“โก(๐‘ก),๐‘ฆ =๐‘”โก(๐‘ก).

Screen Shot 2019-06-26 at 1.55.27 PM.png

Corollary 5.2.4

Let ๐‘“ be as in Corollary 3. Then

(i) ๐‘“ is constant on [๐‘Ž,๐‘] iff ๐‘“โ€ฒ =0 on (๐‘Ž,๐‘);

(ii) ๐‘“ โ†‘ on [๐‘Ž,๐‘] iff ๐‘“โ€ฒ โ‰ฅ0 on (๐‘Ž,๐‘); and

(iii) ๐‘“ โ†“ on [๐‘Ž,๐‘] iff ๐‘“โ€ฒ โ‰ค0 on (๐‘Ž,๐‘).

Proof

Let ๐‘“โ€ฒ =0 on (๐‘Ž,๐‘). If ๐‘Ž โ‰ค๐‘ฅ โ‰ค๐‘ฆ โ‰ค๐‘, apply Corollary 3 to the interval [๐‘ฅ,๐‘ฆ] to obtain

๐‘“โก(๐‘ฆ)โˆ’๐‘“โก(๐‘ฅ)=๐‘“โ€ฒโก(๐‘ž)โข(๐‘ฆโˆ’๐‘ฅ) for some ๐‘žโˆˆ(๐‘Ž,๐‘) and ๐‘“โ€ฒโก(๐‘ž)=0.(5.2.11)

Thus ๐‘“โก(๐‘ฆ) โˆ’๐‘“โก(๐‘ฅ) =0 for ๐‘ฅ,๐‘ฆ โˆˆ[๐‘Ž,๐‘], so ๐‘“ is constant.

The rest is left to the reader. โ—ป

Theorem 5.2.3 (inverse functions)

Let ๐‘“ :๐ธ1 โ†’๐ธ1 be relatively continuous and strictly monotone on an interval ๐ผ โІ๐ธ1. Let ๐‘“โ€ฒโก(๐‘) โ‰ 0 at some interior point ๐‘ โˆˆ๐ผ. Then the inverse function ๐‘” =๐‘“โˆ’1 (with ๐‘“ restricted to ๐ผ) has a derivative at ๐‘ž =๐‘“โก(๐‘), and

๐‘”โ€ฒโก(๐‘ž)=1๐‘“โ€ฒโก(๐‘).(5.2.12)

(If ๐‘“โ€ฒโก(๐‘) =ยฑโˆž, then ๐‘”โ€ฒโก(๐‘ž) =0.)

Proof

By Theorem 3 of Chapter 4, ยง9, ๐‘” =๐‘“โˆ’1 is strictly monotone and relatively continuous on ๐‘“โก[๐ผ], itself an interval. If ๐‘ is interior to ๐ผ, then ๐‘ž =๐‘“โก(๐‘) is interior to ๐‘“โก[๐ผ]. (Why?)

Now if ๐‘ฆ โˆˆ๐‘“โก[๐ผ], we set

ฮ”โข๐‘”=๐‘”โก(๐‘ฆ)โˆ’๐‘”โก(๐‘ž),ฮ”โข๐‘ฆ=๐‘ฆโˆ’๐‘ž,๐‘ฅ=๐‘“โˆ’1โก(๐‘ฆ)=๐‘”โก(๐‘ฆ), and ๐‘“โก(๐‘ฅ)=๐‘ฆ(5.2.13)

and obtain

ฮ”โข๐‘”ฮ”โข๐‘ฆ=๐‘”โก(๐‘ฆ)โˆ’๐‘”โก(๐‘ž)๐‘ฆโˆ’๐‘ž=๐‘ฅโˆ’๐‘๐‘“โก(๐‘ฅ)โˆ’๐‘“โก(๐‘)=ฮ”โข๐‘ฅฮ”โข๐‘“ for ๐‘ฅโ‰ ๐‘.(5.2.14)

Now if ๐‘ฆ โ†’๐‘ž, the continuity of ๐‘” at ๐‘ž yields ๐‘”โก(๐‘ฆ) โ†’๐‘”โก(๐‘ž); i.e., ๐‘ฅ โ†’๐‘. Also, ๐‘ฅ โ‰ ๐‘ iff ๐‘ฆ โ‰ ๐‘ž, for ๐‘“ and ๐‘” are one-to-one functions. Thus we may substitute ๐‘ฆ =๐‘“โก(๐‘ฅ) or ๐‘ฅ =๐‘”โก(๐‘ฆ) to get

๐‘”โ€ฒโก(๐‘ž)=lim๐‘ฆโ†’๐‘žโกฮ”โข๐‘”ฮ”โข๐‘ฆ=lim๐‘ฅโ†’๐‘โกฮ”โข๐‘ฅฮ”โข๐‘“=1lim๐‘ฅโ†’๐‘โก(ฮ”โข๐‘“โก/ฮ”โข๐‘ฅ)=1๐‘“โ€ฒโก(๐‘),(5.2.15)

where we use the convention 1โˆž =0 if ๐‘“โ€ฒโก(๐‘) =โˆž. โ—ป

Examples

(A) Let

๐‘“โก(๐‘ฅ)=log๐‘Žโก|๐‘ฅ| with ๐‘“โก(0)=0.(5.2.16)

Let ๐‘ >0. Then (โˆ€๐‘ฅ >0)

ฮ”โข๐‘“=๐‘“โก(๐‘ฅ)โˆ’๐‘“โก(๐‘)=log๐‘Žโก๐‘ฅโˆ’log๐‘Žโก๐‘=log๐‘Žโก(๐‘ฅ/๐‘)=log๐‘Žโก๐‘+(๐‘ฅโˆ’๐‘)๐‘=log๐‘Žโก(1+ฮ”โข๐‘ฅ๐‘).(5.2.17)

Thus

ฮ”โข๐‘“ฮ”โข๐‘ฅ=log๐‘Žโก(1+ฮ”โข๐‘ฅ๐‘)1/ฮ”โข๐‘ฅ.(5.2.18)

Now let ๐‘ง =ฮ”โข๐‘ฅ/๐‘. (Why is this substitution admissible?) Then using the formula

lim๐‘งโ†’0โก(1+๐‘ง)1/๐‘ง=๐‘’ (see Chapter 4, ยง2, Example (C)) (5.2.19)

and the continuity of the log and power functions, we obtain

๐‘“โ€ฒโก(๐‘)=lim๐‘ฅโ†’๐‘โกฮ”โข๐‘“ฮ”โข๐‘ฅ=lim๐‘งโ†’0โกlog๐‘Žโก[(1+๐‘ง)1/๐‘ง]1/๐‘=log๐‘Žโก๐‘’1/๐‘=1๐‘โขlog๐‘Žโก๐‘’.(5.2.20)

The same formula results also if ๐‘ <0, i.e., |๐‘| =โˆ’๐‘. At ๐‘ =0,๐‘“ has one-sided derivatives (ยฑโˆž) only (verify!), so ๐‘“โ€ฒโก(0) =0 by Definition 1 in ยง1.

(B) The inverse of the log ๐‘Ž function is the exponential ๐‘” :๐ธ1 โ†’๐ธ1, with

๐‘”โก(๐‘ฆ)=๐‘Ž๐‘ฆ(๐‘Ž>0,๐‘Žโ‰ 1).(5.2.21)

By Theorem 3, we have

(โˆ€๐‘žโˆˆ๐ธ1)๐‘”โ€ฒโก(๐‘ž)=1๐‘“โ€ฒโก(๐‘),๐‘=๐‘”โก(๐‘ž)=๐‘Ž๐‘ž.(5.2.22)

Thus

๐‘”โ€ฒโก(๐‘ž)=11๐‘โขlog๐‘Žโก๐‘’=๐‘log๐‘Žโก๐‘’=๐‘Ž๐‘žlog๐‘Žโก๐‘’.(5.2.23)

Symbolically,

(log๐‘Žโก|๐‘ฅ|)โ€ฒ=1๐‘ฅโขlog๐‘Žโก๐‘’โก(๐‘ฅโ‰ 0);(๐‘Ž๐‘ฅ)โ€ฒ=๐‘Ž๐‘ฅlog๐‘Žโก๐‘’=๐‘Ž๐‘ฅโขlnโก๐‘Ž.(5.2.24)

In particular, if ๐‘Ž =๐‘’, we have log๐‘’โก๐‘Ž =1 and log๐‘Žโก๐‘ฅ =lnโก๐‘ฅ; hence

(lnโก|๐‘ฅ|)โ€ฒ=1๐‘ฅโข(๐‘ฅโ‰ 0) and (๐‘’๐‘ฅ)โ€ฒ=๐‘’๐‘ฅ(๐‘ฅโˆˆ๐ธ1).(5.2.25)

(C) The power function ๐‘” :(0,+โˆž) โ†’๐ธ1 is given by

๐‘”โก(๐‘ฅ)=๐‘ฅ๐‘Ž=expโก(๐‘Žโ‹…lnโก๐‘ฅ) for ๐‘ฅ>0 and fixed ๐‘Žโˆˆ๐ธ1.(5.2.26)

By the chain rule (ยง1, Theorem 3), we obtain

๐‘”โ€ฒโก(๐‘ฅ)=expโก(๐‘Žโ‹…lnโก๐‘ฅ)โ‹…๐‘Ž๐‘ฅ=๐‘ฅ๐‘Žโ‹…๐‘Ž๐‘ฅ=๐‘Žโ‹…๐‘ฅ๐‘Žโˆ’1.(5.2.27)

Thus we have the symbolic formula

(๐‘ฅ๐‘Ž)โ€ฒ=๐‘Žโ‹…๐‘ฅ๐‘Žโˆ’1 for ๐‘ฅ>0 and fixed ๐‘Žโˆˆ๐ธ1.(5.2.28)

Theorem 5.2.4 (Darboux)

If ๐‘“ :๐ธ1 โ†’๐ธโˆ— is relatively continuous and has a derivative on an interval I, then ๐‘“โ€ฒ has the Darboux property (Chapter 4, ยง9 ) on ๐ผ.

Proof

Let ๐‘,๐‘ž โˆˆ๐ผ and ๐‘“โ€ฒโก(๐‘) <๐‘ <๐‘“โ€ฒโก(๐‘ž). Put ๐‘”โก(๐‘ฅ) =๐‘“โก(๐‘ฅ) โˆ’๐‘โข๐‘ฅ. Assume ๐‘”โ€ฒ โ‰ 0 on (๐‘,๐‘ž) and find a contradiction to Theorem 1. Details are left to the reader. โ—ป


This page titled 5.2: Derivatives of Extended-Real Functions is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?