5.5: Antiderivatives (Primitives, Integrals)
\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}
\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}
( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}
\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}
\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}
\newcommand{\inner}[2]{\langle #1, #2 \rangle}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\id}{\mathrm{id}}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\kernel}{\mathrm{null}\,}
\newcommand{\range}{\mathrm{range}\,}
\newcommand{\RealPart}{\mathrm{Re}}
\newcommand{\ImaginaryPart}{\mathrm{Im}}
\newcommand{\Argument}{\mathrm{Arg}}
\newcommand{\norm}[1]{\| #1 \|}
\newcommand{\inner}[2]{\langle #1, #2 \rangle}
\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}
\newcommand{\vectorA}[1]{\vec{#1}} % arrow
\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow
\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vectorC}[1]{\textbf{#1}}
\newcommand{\vectorD}[1]{\overrightarrow{#1}}
\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}
\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}
\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}
\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}Given f : E^{1} \rightarrow E, we often have to find a function F such that F^{\prime}=f on I, or at least on I-Q. We also require F to be relatively continuous and finite on I. This process is called antidifferentiation or integration.
We call F : E^{1} \rightarrow E a primitive, or antiderivative, or an indefinite integral, of f on I iff
(i) F is relatively continuous and finite on I, and
(ii) F is differentiable, with F^{\prime}=f, on I-Q at least.
We then write
F=\int f, \text { or } F(x)=\int f(x) dx, \text { on } I.
(The latter is classical notation.)
If such an F exists (which is not always the case), we shall say that \int f exists on I, or that f has a primitive (or antiderivative) on I, or that f is primitively integrable (briefly integrable) on I.
If F^{\prime}=f on a set B \subseteq I, we say that \int f is exact on B and call F an exact primitive on B. Thus if Q=\emptyset, \int f is exact on all of I.
Note 1. Clearly, if F^{\prime}=f, then also (F+c)^{\prime}=f for a finite constant c. Thus the notation F=\int f is rather incomplete; it means that F is one of many primitives. We now show that all of them have the form F+c (or
\int f+c ).
If F and G are primitive to f on I, then G-F is constant on I.
- Proof
-
By assumption, F and G are relatively continuous and finite on I; hence so is G-F. Also, F^{\prime}=f on I-Q and G^{\prime}=f on I-P. (Q and P are countable, but possibly Q \neq P. )
Hence both F^{\prime} and G^{\prime} equal f on I-S, where S=P \cup Q, and S is countable itself by Theorem 2 of Chapter 1, §9.
Thus by Corollary 3 in §4, F^{\prime}=G^{\prime} on I-S implies G-F=c (constant) on each [x, y] \subseteq I; hence G-F=c (or G=F+c) on I. \quad \square
If F=\int f on I and if a, b \in I (where a \leq b or b \leq a), we define
\int_{a}^{b} f=\int_{a}^{b} f(x) d x=F(b)-F(a), \text { also written } F\left.(x)\right|_{a} ^{b}.
This expression is called the definite integral of f from a to b.
The definite integral of f from a to b is independent of the particular choice of the primitive F for f, and thus unambiguous, for if G is another primitive, Theorem 1 yields G=F+c, so
G(b)-G(a)=F(b)+c-[F(a)+c]=F(b)-F(a),
and it does not matter whether we take F or G.
Note that \int_{a}^{b} f(x) d x, or \int_{a}^{b} f, is a constant in the range space E (a vector if f is vector valued). The "x" in \int_{a}^{b} f(x) dx is a "dummy variable" only, and it may be replaced by any other letter. Thus
\int_{a}^{b} f(x) d x=\int_{a}^{b} f(y) d y=F(b)-F(a).
On the other hand, the indefinite integral is a function: F : E^{1} \rightarrow E.
Note 2. We may, however, vary a or b (or both) in (1). Thus, keeping a fixed and varying b, we can define a function
G(t)=\int_{a}^{t} f=F(t)-F(a), \quad t \in I.
Then G^{\prime}=F^{\prime}=f on I, and G(a)=F(a)-F(a)=0. Thus if \int f exists on I, f has a (unique) primitive G on I such that G(a)=0. (It is unique by Theorem 1. Why?)
(a) Let
f(x)=\frac{1}{x} \text { and } F(x)=\ln |x|, \text { with } F(0)=f(0)=0.
Then F^{\prime}=f and F=\int f on (-\infty, 0) and on (0,+\infty) but not on E^{1}, since F is discontinuous at 0, contrary to Definition 1. We compute
\int_{1}^{2} f=\ln 2-\ln 1=\ln 2.
(b) On E^{1}, let
f(x)=\frac{|x|}{x} \text { and } F(x)=|x|, \text { with } f(0)=1.
Here F is continuous and F^{\prime}=f on E^{1}-\{0\}. Thus F=\int f on E^{1}, exact on E^{1}-\{0\}. Here I=E^{1}, Q=\{0\}.
We compute
\int_{-2}^{2} f=F(2)-F(-2)=2-2=0
(even though f never vanishes on E^{1}).
Basic properties of integrals follow from those of derivatives. Thus we have the following.
If \int f and \int g exist on I, so does \int(p f+q g) for any scalars p, q (in the scalar field of E). Moreover, for any a, b \in I, we obtain
(i) \int_{a}^{b}(p f+q g)=p \int_{a}^{b} f+q \int_{a}^{b} g;
(ii) \int_{a}^{b}(f \pm g)=\int_{a}^{b} f \pm \int_{a}^{b} g; and
(iii) \int_{a}^{b} p f=p \int_{a}^{b} f.
- Proof
-
By assumption, there are F and G such that
F^{\prime}=f \text { on } I-Q \text { and } G^{\prime}=g \text { on } I-P.
Thus, setting S=P \cup Q and H=p F+q G, we have
H^{\prime}=p F^{\prime}+q G^{\prime}=p f+q g \text { on } I-S,
with P, Q, and S countable. Also, H=p F+q G is relatively continuous and finite on I, as are F and G.
Thus by definition, H=\int(p f+q g) exists on I, and by (1),
\int_{a}^{b}(p f+q g)=H(b)-H(a)=p F(b)+q G(b)-p F(a)-q G(a)=p \int_{a}^{b} f+q \int_{a}^{b} g,
proving (i*).
With p=1 and q=\pm 1, we obtain (ii*).
Taking q=0, we get (iii*). \quad \square
If both \int f and \int|f| exist on I=[a, b], then
\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|.
- Proof
-
As before, let
F^{\prime}=f \text { and } G^{\prime}=|f| \text { on } I-S(S=Q \cup P, \text { all countable),}
where F and G are relatively continuous and finite on I and G=\int|f| is real. Also, \left|F^{\prime}\right|=|f|=G^{\prime} on I-S. Thus by Theorem 1 of §4,
|F(b)-F(a)| \leq G(b)-G(a)=\int_{a}^{b}|f|. \quad \square
If \int f exists on I=[a, b], exact on I-Q, then
\left|\int_{a}^{b} f\right| \leq M(b-a)
for some real
M \leq \sup _{t \in I-Q}|f(t)|.
This is simply Corollary 1 of §4, when applied to a primitive, F=\int f
If F=\int f on I and f=g on I-Q, then F is also a primitive of g, and
\int_{a}^{b} f=\int_{a}^{b} g \quad \text { for } a, b \in I.
(Thus we may arbitrarily redefine f on a countable Q.)
- Proof
-
Let F^{\prime}=f on I-P. Then F^{\prime}=g on I-(P \cup Q). The rest is clear. \quad \square
Let f and g be real or complex (or let f be scalar valued and g vector valued), both relatively continuous on I and differentiable on I-Q. Then if \int f^{\prime} g exists on I, so does \int f g^{\prime}, and we have
\int_{a}^{b} f g^{\prime}=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f^{\prime} g \quad \text { for any } a, b \in I.
- Proof
-
By assumption, f g is relatively continuous and finite on I, and
(f g)^{\prime}=f g^{\prime}+f^{\prime} g \text { on } I-Q.
Thus, setting H=f g, we have H=\int\left(f g^{\prime}+f^{\prime} g\right) on I. Hence by Corollary 1 if \int f^{\prime} g exists on I, so does \int\left(\left(f g^{\prime}+f^{\prime} g\right)-f^{\prime} g\right)=\int f g^{\prime}, and
\int_{a}^{b} f g^{\prime}+\int_{a}^{b} f^{\prime} g=\int_{a}^{b}\left(f g^{\prime}+f^{\prime} g\right)=H(b)-H(a)=f(b) g(b)-f(a) g(a).
Thus (2) follows. \quad \square
The proof of the next three corollaries is left to the reader.
If \int f exists on I then, for a, b, c \in I, we have
(i) \int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f;
(ii) \int_{a}^{a} f=0; and
(iii) \int_{b}^{a} f=-\int_{a}^{b} f.
A function f : E^{1} \rightarrow E^{n}\left(^{*} C^{n}\right) is integrable on I iff all its components \left(f_{1}, f_{2}, \ldots, f_{n}\right) are, and then by Theorem 5 in §1)
\int_{a}^{b} f=\left(\int_{a}^{b} f_{1}, \ldots, \int_{a}^{b} f_{n}\right)=\sum_{k=1}^{n} \vec{e}_{k} \int_{a}^{b} f_{k} \text { for any } a, b \in I.
Hence if f is complex,
\int_{a}^{b} f=\int_{a}^{b} f_{\mathrm{re}}+i \cdot \int_{a}^{b} f_{\mathrm{im}}
(see Chapter 4, §3, Note 5).
(c) Define f : E^{1} \rightarrow E^{3} by
f(x)=(a \cdot \cos x, a \cdot \sin x, 2 c x), \quad a, c \in E^{1}.
Verify that
\int_{0}^{\pi} f(x) d x=\left.\left(a \cdot \sin x,-a \cdot \cos x, c x^{2}\right)\right|_{0} ^{\pi}=\left(0,2 a, c \pi^{2}\right)=2 a \vec{j}+c \pi^{2} \vec{k}.
(d) \int_{0}^{\pi} e^{i x} d x=\int_{0}^{\pi}(\cos x+i \cdot \sin x) d x=\left.(\sin x-i \cdot \cos x)\right|_{0} ^{\pi}=2i.
If f=0 on I-Q, then \int f exists on I, and
\left|\int_{a}^{b} f\right|=\int_{a}^{b}|f|=0 \quad \text { for } a, b \in I.
Suppose g : E^{1} \rightarrow E^{1} (real) is differentiable on I, while f : E^{1} \rightarrow E has a primitive on g[I], exact on g[I-Q].
Then
\int f(g(x)) g^{\prime}(x) d x \quad\left(i . e ., \int(f \circ g) g^{\prime}\right)
exists on I, and for any a, b \in I, we have
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{p}^{q} f(y) d y, \text { where } p=g(a) \text { and } q=g(b).
Thus, using classical notation, we may substitute y=g(x), provided that we
also substitute dy=g^{\prime}(x) dx and change the bounds of integrals (3). Here we treat the expressions dy and g^{\prime}(x) dx purely formally, without assigning them any separate meaning outside the context of the integrals.
- Proof
-
Let F=\int f on g[I], and F^{\prime}=f on g[I-Q]. Then the composite function H=F \circ g is relatively continuous and finite on I. (Why?) By Theorem 3 of §1,
H^{\prime}(x)=F^{\prime}(g(x)) g^{\prime}(x) \text { for } x \in I-Q;
i.e.,
H^{\prime}=\left(F^{\prime} \circ g\right) g^{\prime} \text { on } I-Q.
Thus H=\int(f \circ g) g^{\prime} exists on I, and
\int_{a}^{b}(f \circ g) g^{\prime}=H(b)-H(a)=F(g(b))-F(g(a))=F(q)-F(p)=\int_{p}^{q} f. \quad \square
Note 3. The theorem does not require that g be one to one on I, but if it is, then one can drop the assumption that \int f is exact on g[I-Q]. (See Problem 4.)
(e) Find \int_{0}^{\pi / 2} \sin ^{2} x \cdot \cos x dx.
Here f(y)=y^{2}, y=g(x)=\sin x, d y=\cos x d x, F(y)=y^{3} / 3, a=0, b=\pi / 2, p=\sin 0=0, and q=\sin (\pi / 2)=1, so (3) yields
\int_{0}^{\pi / 2} \sin ^{2} x \cdot \cos x d x=\int_{0}^{1} y^{2} d y=\left.\frac{y^{3}}{3}\right|_{0} ^{1}=\frac{1}{3}-0=\frac{1}{3}.
For real functions, we obtain some inferences dealing with inequalities.
If f, g : E^{1} \rightarrow E^{1} are integrable on I=[a, b], then we have the following:
(i) f \geq 0 on I-Q implies \int_{a}^{b} f \geq 0.
(i') f \leq 0 on I-Q implies \int_{a}^{b} f \leq 0.
(ii) f \geq g on I-Q implies
\int_{a}^{b} f \geq \int_{a}^{b} g \text { (dominance law).}
(iii) If f \geq 0 on I-Q and a \leq c \leq d \leq b, then
\int_{a}^{b} f \geq \int_{c}^{d} f \text { (monotonicity law).}
(iv) If \int_{a}^{b} f=0, and f \geq 0 on I-Q, then f=0 on some I-P, P countable.
- Proof
-
By Corollary 4, we may redefine f on Q so that our assumptions in (i)-(iv) hold on all of I. Thus we write "I" for "I-Q."
By assumption, F=\int f and G=\int g exist on I. Here F and G are relatively continuous and finite on I=[a, b], with F^{\prime}=f and I-P, for another countable set P (this P cannot be omitted). Now consider the cases (i)-(iv). (P is fixed henceforth.)
(i) Let f \geq 0 on I; i.e., F^{\prime}=f \geq 0 on I-P. Then by Theorem 2 in §4, F \uparrow on I=[a, b]. Hence F(a) \leq F(b), and so
\int_{a}^{b} f=F(b)-F(a) \geq 0.
One proves (i') similarly.
(ii) If f-g \geq 0, then by (i),
\int_{a}^{b}(f-g)=\int_{a}^{b} f-\int_{a}^{b} g \geq 0,
so \int_{a}^{b} f \geq \int_{a}^{b} g, as claimed.
(iii) Let f \geq 0 on I and a \leq c \leq d \leq b. Then by (i),
\int_{a}^{c} f \geq 0 \text { and } \int_{d}^{b} f \geq 0.
Thus by Corollary 6,
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{d} f+\int_{d}^{b} f \geq \int_{c}^{d} f,
as asserted.
(iv) Seeking a contradiction, suppose \int_{a}^{b} f=0, f \geq 0 on I, yet f(p)>0 for some p \in I-P (P as above), so F^{\prime}(p)=f(p)>0.
Now if a \leq p<b, Lemma 1 of §2 yields F(c)>F(p) for some c \in(p, b]. Then by (iii),
\int_{a}^{b} f \geq \int_{p}^{c} f=F(c)-F(p)>0,
contrary to \int_{a}^{b} f=0; similarly in case a<p \leq b. \quad \square
Note 4. Hence
\int_{a}^{b}|f|=0 \text { implies } f=0 \text { on }[a, b]-P
(P countable), even for vector-valued functions (for |f| is always real, and so Theorem 3 applies).
However, \int_{a}^{b} f=0 does not suffice, even for real functions (unless f is signconstant). For example,
\int_{0}^{2 \pi} \sin x d x=0, \text { yet } \sin x \not \equiv 0 \text { on any } I-P.
See also Example (b).
If f is real and \int f exists on [a, b], exact on (a, b), then
\int_{a}^{b} f=f(q)(b-a) \text { for some } q \in(a, b).
- Proof
-
Apply Corollary 3 in §2 to the function F=\int f. \quad \square
Caution: Corollary 9 may fail if \int f is inexact at some p \in(a, b). (Exactness on [a, b]-Q does not suffice, as it does not in Corollary 3 of §2, used here.) Thus in Example (b) above, \int_{-2}^{2} f=0. Yet for no q is f(q)(2+2)=0, since f(q)=\pm 1. The reason is that \int f is inexact just at 0, an interior point of [-2,2].