6.7: Inverse and Implicit Functions. Open and Closed Maps
( \newcommand{\kernel}{\mathrm{null}\,}\)
I. "If f∈CD1 at →p, then f resembles a linear map (namely df) at →p." Pursuing this basic idea, we first make precise our notion of "f∈CD1 at →p."
A map f:E′→E is continuously differentiable, or of class CD1 (written f∈CD1), at →p iff the following statement is true:
Given any ε>0, there is δ>0 such that f is differentiable on the globe ¯G=¯G→p(δ), with ‖
By Problem 10 in §5, this definition agrees with Definition 1 §5, but is no longer limited to the case E^{\prime}=E^{n}\left(C^{n}\right). See also Problems 1 and 2 below.
We now obtain the following result.
Let E^{\prime} and E be complete. If f : E^{\prime} \rightarrow E is of class C D^{1} at \vec{p} and if d f(\vec{p} ; \cdot) is bijective (§6), then f is one-to-one on some globe \overline{G}=\overline{G_{\vec{p}}}(\delta).
Thus f "locally" resembles df (\vec{p} ; \cdot) in this respect.
- Proof
-
Set \phi=d f(\vec{p} ; \cdot) and
\left\|\phi^{-1}\right\|=\frac{1}{\varepsilon}
(cf. Theorem 2 of §6).
By Definition 1, fix \delta>0 so that for \vec{x} \in \overline{G}=\overline{G_{\vec{p}}(\delta)}.
\|d f(\vec{x} ; \cdot)-\phi\|<\frac{1}{2} \varepsilon.
Then by Note 5 in §2,
(\forall \vec{x} \in \overline{G})\left(\forall \vec{u} \in E^{\prime}\right) \quad|d f(\vec{x} ; \vec{u})-\phi(\vec{u})| \leq \frac{1}{2} \varepsilon|\vec{u}|.
Now fix any \vec{r}, \vec{s} \in \overline{G}, \vec{r} \neq \vec{s}, and set \vec{u}=\vec{r}-\vec{s} \neq 0. Again, by Note 5 in §2,
|\vec{u}|=\left|\phi^{-1}(\phi(\vec{u}))\right| \leq\left\|\phi^{-1}\right\||\phi(\vec{u})|=\frac{1}{\varepsilon}|\phi(\vec{u})|;
so
0<\varepsilon|\vec{u}| \leq|\phi(\vec{u})|.
By convexity, \overline{G} \supseteq I=L[\vec{s}, \vec{r}], so (1) holds for \vec{x} \in I, \vec{x}=\vec{s}+t \vec{u}, 0 \leq t \leq 1.
Noting this, set
h(t)=f(\vec{s}+t \vec{u})-t \phi(\vec{u}), \quad t \in E^{1}.
Then for 0 \leq t \leq 1,
\begin{aligned} h^{\prime}(t) &=D_{\vec{u}} f(\vec{s}+t \vec{u})-\phi(\vec{u}) \\ &=d f(\vec{s}+t \vec{u} ; \vec{u})-\phi(\vec{u}). \end{aligned}
(Verify!) Thus by (1) and (2),
\begin{aligned} \sup _{0 \leq t \leq 1}\left|h^{\prime}(t)\right| &=\sup _{0 \leq t \leq 1}|d f(\vec{s}+t \vec{u} ; \vec{u})-\phi(\vec{u})| \\ & \leq \frac{\varepsilon}{2}|\vec{u}| \leq \frac{1}{2}|\phi(\vec{u})|. \end{aligned}
(Explain!) Now, by Corollary 1 in Chapter 5, §4,
|h(1)-h(0)| \leq(1-0) \cdot \sup _{0 \leq t \leq 1}\left|h^{\prime}(t)\right| \leq \frac{1}{2}|\phi(\vec{u})|.
As h(0)=f(\vec{s}) and
h(1)=f(\vec{s}+\vec{u})-\phi(\vec{u})=f(\vec{r})-\phi(\vec{u}),
we obtain (even if \vec{r}=\vec{s})
|f(\vec{r})-f(\vec{s})-\phi(\vec{u})| \leq \frac{1}{2}|\phi(\vec{u})| \quad(\vec{r}, \vec{s} \in \overline{G}, \vec{u}=\vec{r}-\vec{s}).
But by the triangle law,
|\phi(\vec{u})|-|f(\vec{r})-f(\vec{s})| \leq|f(\vec{r})-f(\vec{s})-\phi(\vec{u})|.
Thus
|f(\vec{r})-f(\vec{s})| \geq \frac{1}{2}|\phi(\vec{u})| \geq \frac{1}{2} \varepsilon|\vec{u}|=\frac{1}{2} \varepsilon|\vec{r}-\vec{s}|
by (2).
Hence f(\vec{r}) \neq f(\vec{s}) whenever \vec{r} \neq \vec{s} in \overline{G}; so f is one-to-one on \overline{G}, as claimed.\quad \square
Under the assumptions of Theorem 1, the maps f and f^{-1} (the inverse of f restricted to \overline{G}) are uniformly continuous on \overline{G} and f[\overline{G}], respectively.
- Proof
-
By (3),
\begin{aligned}|f(\vec{r})-f(\vec{s})| & \leq|\phi(\vec{u})|+\frac{1}{2}|\phi(\vec{u})| \\ & \leq|2 \phi(\vec{u})| \\ & \leq 2\|\phi\||\vec{u}| \\ &=2\|\phi\||\vec{r}-\vec{s}| \quad(\vec{r}, \vec{s} \in \overline{G}). \end{aligned}
This implies uniform continuity for f. (Why?)
Next, let g=f^{-1} on H=f[\overline{G}].
If \vec{x}, \vec{y} \in H, let \vec{r}=g(\vec{x}) and \vec{s}=g(\vec{y}); so \vec{r}, \vec{s} \in \overline{G}, with \vec{x}=f(\vec{r}) and \vec{y}=f(\vec{s}). Hence by (4),
|\vec{x}-\vec{y}| \geq \frac{1}{2} \varepsilon|g(\vec{x})-g(\vec{y})|,
proving all for g, too.\quad \square
Again, f resembles \phi which is uniformly continuous, along with \phi^{-1}.
II. We introduce the following definition.
A map f :(S, \rho) \rightarrow\left(T, \rho^{\prime}\right) is closed (open) on D \subseteq S iff, for any X \subseteq D the set f[X] is closed (open) in T whenever X is so in S.
Note that continuous maps have such a property for inverse images (Problem 15 in Chapter 4, §2).
Under the assumptions of Theorem 1, f is closed on \overline{G}, and so the set f[\overline{G}] is closed in E.
Similarly for the map f^{-1} on f[\overline{G}].
- Proof for E^{\prime}=E=E^{n}\left(C^{n}\right) (for the general case, see Problem 6)
-
Given any closed X \subseteq \overline{G}, we must show that f[X] is closed in E.
Now, as \overline{G} is closed and bounded, it is compact (Theorem 4 of Chapter 4, §6).
So also is X (Theorem 1 in Chapter 4, §6), and so is f[X] (Theorem 1 of Chapter 4, §8).
By Theorem 2 in Chapter 4, §6, f[X] is closed, as required.\quad \square
For the rest of this section, we shall set E^{\prime}=E=E^{n}\left(C^{n}\right).
If E^{\prime}=E=E^{n}\left(C^{n}\right) in Theorem 1, with other assumptions unchanged, then f is open on the globe G=G_{\vec{p}}(\delta), with \delta sufficiently small.
- Proof
-
We first prove the following lemma.
f[G] contains a globe G_{\vec{q}}(\alpha) where \vec{q}=f(\vec{p}).
- Proof
-
Indeed, let
\alpha=\frac{1}{4} \varepsilon \delta,
where \delta and \varepsilon are as in the proof of Theorem 1. (We continue the notation and formulas of that proof.)
Fix any \vec{c} \in G_{\vec{q}}(\alpha); so
|\vec{c}-\vec{q}|<\alpha=\frac{1}{4} \varepsilon \delta.
Set h=|f-\vec{c}| on E^{\prime}. As f is uniformly continuous on \overline{G}, so is h.
Now, \overline{G} is compact in E^{n}\left(C^{n}\right); so Theorem 2(ii) in Chapter 4, §8, yields a point \vec{r} \in \overline{G} such that
h(\vec{r})=\min h[\overline{G}].
We claim that \vec{r} is in G (the interior of \overline{G}).
Otherwise, |\vec{r}-\vec{p}|=\delta ; for by (4),
\begin{aligned} 2 \alpha=\frac{1}{2} \varepsilon \delta=\frac{1}{2} \varepsilon|\vec{r}-\vec{p}| & \leq|f(\vec{r})-f(\vec{p})| \\ & \leq|f(\vec{r})-\vec{c}|+|\vec{c}-f(\vec{p})| \\ &=h(\vec{r})+h(\vec{p}). \end{aligned}
But
h(\vec{p})=|\vec{c}-f(\vec{p})|=|\vec{c}-\vec{q}|<\alpha;
and so (7) yields
h(\vec{p})<\alpha<h(\vec{r}),
contrary to the minimality of h(\vec{r}) (see (6)). Thus |\vec{r}-\vec{p}| cannot equal \delta.
We obtain |\vec{r}-\vec{p}|<\delta, so \vec{r} \in G_{\vec{p}}(\delta)=G and f(\vec{r}) \in f[G]. We shall now show that \vec{c}=f(\vec{r}).
To this end, we set \vec{v}=\vec{c}-f(\vec{r}) and prove that \vec{v}=\overrightarrow{0}. Let
\vec{u}=\phi^{-1}(\vec{v}),
where
\phi=d f(\vec{p} ; \cdot),
as before. Then
\vec{v}=\phi(\vec{u})=d f(\vec{p} ; \vec{u}).
With \vec{r} as above, fix some
\vec{s}=\vec{r}+t \vec{u} \quad(0<t<1)
with t so small that \vec{s} \in G also. Then by formula (3),
|f(\vec{s})-f(\vec{r})-\phi(t \vec{u})| \leq \frac{1}{2}|t \vec{v}|;
also,
|f(\vec{r})-\vec{c}+\phi(t \vec{u})|=(1-t)|\vec{v}|=(1-t) h(\vec{r})
by our choice of \vec{v}, \vec{u} and h. Hence by the triangle law,
h(\vec{s})=|f(\vec{s})-\vec{c}| \leq\left(1-\frac{1}{2} t\right) h(\vec{r}).
(Verify!)
As 0<t<1, this implies h(\vec{r})=0 (otherwise, h(\vec{s})<h(\vec{r}), violating (6)).
Thus, indeed,
|\vec{v}|=|f(\vec{r})-\vec{c}|=0,
i.e.,
\vec{c}=f(\vec{r}) \in f[G] \quad \text { for } \vec{r} \in G.
But \vec{c} was an arbitrary point of G_{\vec{q}}(\alpha). Hence
G_{\vec{q}}(\alpha) \subseteq f[G],
proving the lemma.\quad \square
Proof of Theorem 2. The lemma shows that f(\vec{p}) is in the interior of f[G] if \vec{p}, f, d f(\vec{p} ; \cdot), and \delta are as in Theorem 1.
But Definition 1 implies that here f \in C D^{1} on all of G (see Problem 1).
Also, d f(\vec{x} ; \cdot) is bijective for any \vec{x} \in G by our choice of G and Theorems 1 and 2 in §6.
Thus f maps all \vec{x} \in G onto interior points of f[G]; i.e., f maps any open set X \subseteq G onto an open f[X], as required.\quad \square
Note 1. A map
f :(S, \rho) \underset{\text { onto }}{\longleftrightarrow} (T, \rho^{\prime})
is both open and closed ("clopen") iff f^{-1} is continuous - see Problem 15(iv)(v) in Chapter 4, §2, interchanging f and f^{-1}.
Thus \phi=d f(\vec{p} ; \cdot) in Theorem 1 is "clopen" on all of E^{\prime}.
Again, f locally resembles d f(\vec{p} ; \cdot).
III. The Inverse Function Theorem. We now further pursue these ideas.
Under the assumptions of Theorem 2, let g be the inverse of f_{G}\left(f \text { restricted to } G=G_{\vec{p}}(\delta)\right).
Then g \in C D^{1} on f[G] and d g(\vec{y} ; \cdot) is the inverse of d f(\vec{x} ; \cdot) whenever \vec{x}=g(\vec{y}), \vec{x} \in G.
Briefly: "The differential of the inverse is the inverse of the differential."
- Proof
-
Fix any \vec{y} \in f[G] and \vec{x}=g(\vec{y}) ; so \vec{y}=f(\vec{x}) and \vec{x} \in G. Let U=d f(\vec{x} ; \cdot).
As noted above, U is bijective for every \vec{x} \in G by Theorems 1 and 2 in §6; so we may set V=U^{-1}. We must show that V=d g(\vec{y} ; \cdot).
To do this, give \vec{y} an arbitrary (variable) increment \Delta \vec{y}, so small that \vec{y}+\Delta \vec{y} stays in f[G] (an open set by Theorem 2).
As g and f_{G} are one-to-one, \Delta \vec{y} uniquely determines
\Delta \vec{x}=g(\vec{y}+\Delta \vec{y})-g(\vec{y})=\vec{t},
and vice versa:
\Delta \vec{y}=f(\vec{x}+\vec{t})-f(\vec{x}).
Here \Delta \vec{y} and \vec{t} are the mutually corresponding increments of \vec{y}=f(\vec{x}) and \vec{x}=g(\vec{y}). By continuity, \vec{y} \rightarrow \overrightarrow{0} iff \vec{t} \rightarrow \overrightarrow{0}.
As U=d f(\vec{x} ; \cdot),
\lim _{\vec{t} \rightarrow \overline{0}} \frac{1}{|\vec{t}|}|f(\vec{x}+\vec{t})-f(\vec{t})-U(\vec{t})|=0,
or
\lim _{\vec{t} \rightarrow \overrightarrow{0}} \frac{1}{|\vec{t}|}|F(\vec{t})|=0,
where
F(\vec{t})=f(\vec{x}+\vec{t})-f(\vec{t})-U(\vec{t}).
As V=U^{-1}, we have
V(U(\vec{t}))=\vec{t}=g(\vec{y}+\Delta \vec{y})-g(\vec{y}).
So from (9),
\begin{aligned} V(F(\vec{t})) &=V(\Delta \vec{y})-\vec{t} \\ &=V(\Delta \vec{y})-[g(\vec{y}+\Delta \vec{y})-g(\vec{y})]; \end{aligned}
that is,
\frac{1}{|\Delta \vec{y}|}|g(\vec{y}+\Delta \vec{y})-g(\vec{y})-V(\Delta \vec{y})|=\frac{|V(F(\vec{t}))|}{|\Delta \vec{y}|}, \quad \Delta \vec{y} \neq \overrightarrow{0}.
Now, formula (4), with \vec{r}=\vec{x}, \vec{s}=\vec{x}+\vec{t}, and \vec{u}=\vec{t}, shows that
|f(\vec{x}+\vec{t})-f(\vec{x})| \geq \frac{1}{2} \varepsilon|\vec{t}|;
i.e., |\Delta \vec{y}| \geq \frac{1}{2} \varepsilon|\vec{t}|. Hence by (8),
\frac{|V(F(\vec{t}))|}{|\Delta \vec{y}|} \leq \frac{|V(F(\vec{t}) |}{\frac{1}{2} \varepsilon|\vec{t}|}=\frac{2}{\varepsilon}\left|V\left(\frac{1}{|\vec{t}|} F(\vec{t})\right)\right| \leq \frac{2}{\varepsilon}\|V\| \frac{1}{|\vec{t}|}|F(\vec{t})| \rightarrow 0 \text { as } \vec{t} \rightarrow \overrightarrow{0}.
Since \vec{t} \rightarrow \overrightarrow{0} as \Delta \vec{y} \rightarrow \overrightarrow{0} (change of variables!), the expression (10) tends to 0 as \Delta \vec{y} \rightarrow \overrightarrow{0}.
By definition, then, g is differentiable at \vec{y}, with d g(\vec{y};)=V=U^{-1}.
Moreover, Corollary 3 in §6, applies here. Thus
\left(\forall \delta^{\prime}>0\right)\left(\exists \delta^{\prime \prime}>0\right) \quad\|U-W\|<\delta^{\prime \prime} \Rightarrow\left\|U^{-1}-W^{-1}\right\|<\delta^{\prime}.
Taking here U^{-1}=d g(\vec{y}) and W^{-1}=d g(\vec{y}+\Delta \vec{y}), we see that g \in C D^{1} near \vec{y}. This completes the proof.\quad \square
Note 2. If E^{\prime}=E=E^{n}\left(C^{n}\right), the bijectivity of \phi=d f(\vec{p} ; \cdot) is equivalent to
\operatorname{det}[\phi]=\operatorname{det}\left[f^{\prime}(\vec{p})\right] \neq 0
(Theorem 1 of §6).
In this case, the fact that f is one-to-one on G=G_{\vec{p}}(\delta) means, componentwise (see Note 3 in §6), that the system of n equations
f_{i}(\vec{x})=f\left(x_{1}, \ldots, x_{n}\right)=y_{i}, \quad i=1, \ldots, n,
has a unique solution for the n unknowns x_{k} as long as
\left(y_{1}, \ldots, y_{n}\right)=\vec{y} \in f[G].
Theorem 3 shows that this solution has the form
x_{k}=g_{k}(\vec{y}), \quad k=1, \ldots, n,
where the g_{k} are of class C D^{1} on f[G] provided the f_{i} are of class C D^{1} near \vec{p} and det \left[f^{\prime}(\vec{p})\right] \neq 0. Here
\operatorname{det}\left[f^{\prime}(\vec{p})\right]=J_{f}(\vec{p}),
as in §6.
Thus again f "locally" resembles a linear map, \phi=d f(\vec{p} ; \cdot).
IV. The Implicit Function Theorem. Generalizing, we now ask, what about solving n equations in n+m unknowns x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}? Say, we want to solve
f_{k}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)=0, \quad k=1,2, \ldots, n,
for the first n unknowns (or variables) x_{k}, thus expressing them as
x_{k}=H_{k}\left(y_{1}, \ldots, y_{m}\right), \quad k=1, \ldots, n,
with H_{k} : E^{m} \rightarrow E^{1} or H_{k} : C^{m} \rightarrow C.
Let us set \vec{x}=\left(x_{1}, \ldots, x_{n}\right), \vec{y}=\left(y_{1}, \ldots, y_{m}\right), and
(\vec{x}, \vec{y})=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
so that (\vec{x}, \vec{y}) \in E^{n+m}\left(C^{n+m}\right).
Thus the system of equations (11) simplifies to
f_{k}(\vec{x}, \vec{y})=0, \quad k=1, \ldots, n
or
f(\vec{x}, \vec{y})=\overrightarrow{0},
where f=\left(f_{1}, \ldots, f_{n}\right) is a map of E^{n+m}\left(C^{n+m}\right) into E^{n}\left(C^{n}\right) ; f is a function of n+m variables, but it has n components f_{k}; i.e.,
f(\vec{x}, \vec{y})=f\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)
is a vector in E^{n}\left(C^{n}\right).
Let E^{\prime}=E^{n+m}\left(C^{n+m}\right), E=E^{n}\left(C^{n}\right), and let f : E^{\prime} \rightarrow E be of class C D^{1} near
(\vec{p}, \vec{q})=\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m}\right), \quad \vec{p} \in E^{n}\left(C^{n}\right), \vec{q} \in E^{m}\left(C^{m}\right).
Let [\phi] be the n \times n matrix
\left(D_{j} f_{k}(\vec{p}, \vec{q})\right), \quad j, k=1, \ldots, n.
If \operatorname{det}[\phi] \neq 0 and if f(\vec{p}, \vec{q})=\overrightarrow{0}, then there are open sets
P \subseteq E^{n}\left(C^{n}\right) \text { and } Q \subseteq E^{m}\left(C^{m}\right),
with \vec{p} \in P and \vec{q} \in Q, for which there is a unique map
H : Q \rightarrow P
with
f(H(\vec{y}), \vec{y})=\overrightarrow{0}
for all \vec{y} \in Q; furthermore, H \in C D^{1} on Q.
Thus \vec{x}=H(\vec{y}) is a solution of (11) in vector form.
- Proof
-
With the above notation, set
F(\vec{x}, \vec{y})=(f(\vec{x}, \vec{y}), \vec{y}), \quad F : E^{\prime} \rightarrow E^{\prime}.
Then
F(\vec{p}, \vec{q})=(f(\vec{p}, \vec{q}), \vec{q})=(\overrightarrow{0}, \vec{q}),
since f(\vec{p}, \vec{q})=\overrightarrow{0}.
As f \in C D^{1} near (\vec{p}, \vec{q}), so is F (verify componentwise via Problem 9(ii) in §3 and Definition 1 of §5).
By Theorem 4, §3, \operatorname{det}\left[F^{\prime}(\vec{p}, \vec{q})\right]=\operatorname{det}[\phi] \neq 0 (explain!).
Thus Theorem 1 above shows that F is one-to-one on some globe G about (\vec{p}, \vec{q}).
Clearly G contains an open interval about (\vec{p}, \vec{q}). We denote it by P \times Q where \vec{p} \in P, \vec{q} \in Q ; P is open in E^{n}\left(C^{n}\right) and Q is open in E^{m}\left(C^{m}\right).
By Theorem 3, F_{P \times Q} (F restricted to P \times Q) has an inverse
g : A \underset{\text { onto }}{\longleftrightarrow} P \times Q,
where A=F[P \times Q] is open in E^{\prime} (Theorem 2), and g \in C D^{1} on A. Let the map u=\left(g_{1}, \ldots, g_{n}\right) comprise the first n components of g (exactly as f comprises the first n components of F ).
Then
g(\vec{x}, \vec{y})=(u(\vec{x}, \vec{y}), \vec{y})
exactly as F(\vec{x}, \vec{y})=(f(\vec{x}, \vec{y}), \vec{y}). Also, u : A \rightarrow P is of class C D^{1} on A, as g is (explain!).
Now set
H(\vec{y})=u(\overrightarrow{0}, \vec{y});
here \vec{y} \in Q, while
(\overrightarrow{0}, \vec{y}) \in A=F[P \times Q],
for F preserves \vec{y} (the last m coordinates). Also set
\alpha(\vec{x}, \vec{y})=\vec{x}.
Then f=\alpha \circ F (why?), and
f(H(\vec{y}), \vec{y})=f(u(\overrightarrow{0}, \vec{y}), \vec{y})=f(g(\overrightarrow{0}, \vec{y}))=\alpha(F(g(\overrightarrow{0}, \vec{y}))=\alpha(\overrightarrow{0}, \vec{y})=\overrightarrow{0}
by our choice of \alpha and g (inverse to F). Thus
f(H(\vec{y}), \vec{y})=\overrightarrow{0}, \quad \vec{y} \in Q,
as desired.
Moreover, as H(\vec{y})=u(\overrightarrow{0}, \vec{y}), we have
\frac{\partial}{\partial y_{i}} H(\vec{y})=\frac{\partial}{\partial y_{i}} u(\overrightarrow{0}, \vec{y}), \quad \vec{y} \in Q, i \leq m.
As u \in C D^{1}, all \partial u / \partial y_{i} are continuous (Definition 1 in §5); hence so are the \partial H / \partial y_{i}. Thus by Theorem 3 in §3, H \in C D^{1} on Q.
Finally, H is unique for the given P, Q; for
\begin{aligned} f(\vec{x}, \vec{y})=\overrightarrow{0} & \Longrightarrow(f(\vec{x}, \vec{y}), \vec{y})=(\overrightarrow{0}, \vec{y}) \\ & \Longrightarrow F(\vec{x}, \vec{y})=(\overrightarrow{0}, \vec{y}) \\ & \Longrightarrow g(F(\vec{x}, \vec{y}))=g(\overrightarrow{0}, \vec{y}) \\ & \Longrightarrow(\vec{x}, \vec{y})=g(\overrightarrow{0}, \vec{y})=(u(\overrightarrow{0}, \vec{y}), \vec{y}) \\ & \Longrightarrow \vec{x}=u(\overrightarrow{0}, \vec{y})=H(\vec{y}). \end{aligned}
Thus f(\vec{x}, \vec{y})=\overrightarrow{0} implies \vec{x}=H(\vec{y}); so H(\vec{y}) is the only solution for \vec{x}. \quad \square
Note 3. H is said to be implicitly defined by the equation f(\vec{x}, \vec{y})=\overrightarrow{0}. In this sense we say that H(\vec{y}) is an implicit function, given by f(\vec{x}, \vec{y})=\overrightarrow{0}.
Similarly, under suitable assumptions, f(\vec{x}, \vec{y})=\overrightarrow{0} defines \vec{y} as a function of \vec{x}.
Note 4. While H is unique for a given neighborhood P \times Q of (\vec{p}, \vec{q}), another implicit function may result if P \times Q or (\vec{p}, \vec{q}) is changed.
For example, let
f(x, y)=x^{2}+y^{2}-25
(a polynomial; hence f \in C D^{1} on all of E^{2}). Geometrically, x^{2}+y^{2}-25=0 describes a circle.
Solving for x, we get x=\pm \sqrt{25-y^{2}}. Thus we have two functions:
H_{1}(y)=+\sqrt{25-y^{2}}
and
H_{2}(y)=-\sqrt{25-y^{2}}.
If P \times Q is in the upper part of the circle, the resulting function is H_{1}. Otherwise, it is H_{2}. See Figure 28.
V. Implicit Differentiation. Theorem 4 only states the existence (and uniqueness) of a solution, but does not show how to find it, in general.
The knowledge itself that H \in C D^{1} exists, however, enables us to use its derivative or partials and compute it by implicit differentiation, known from calculus.
(a) Let f(x, y)=x^{2}+y^{2}-25=0, as above.
This time treating y as an implicit function of x, y=H(x), and writing y^{\prime} for H^{\prime}(x), we differentiate both sides of (x^{2}+y^{2}-25=0\) with respect to x, using the chain rule for the term y^{2}=[H(x)]^{2}.
This yields 2 x+2 y y^{\prime}=0, whence y^{\prime}=-x / y.
Actually (see Note 4), two functions are involved: y=\pm \sqrt{25-x^{2}}; but both satisfy x^{2}+y^{2}-25=0; so the result y^{\prime}=-x / y applies to both.
Of course, this method is possible only if the derivative y^{\prime} is known to exist. This is why Theorem 4 is important.
(b) Let
f(x, y, z)=x^{2}+y^{2}+z^{2}-1=0, \quad x, y, z \in E^{1}.
Again f satisfies Theorem 4 for suitable x, y, and z.
Setting z=H(x, y), differentiate the equation f(x, y, z)=0 partially with respect to x and y. From the resulting two equations, obtain \frac{\partial z}{\partial x} and \frac{\partial z}{\partial y}.