Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

6.7: Inverse and Implicit Functions. Open and Closed Maps

( \newcommand{\kernel}{\mathrm{null}\,}\)

I. "If fCD1 at p, then f resembles a linear map (namely df) at p." Pursuing this basic idea, we first make precise our notion of "fCD1 at p."

Definition 1

A map f:EE is continuously differentiable, or of class CD1 (written fCD1), at p iff the following statement is true:

 Given any ε>0, there is δ>0 such that f is differentiable on the  globe ¯G=¯Gp(δ), with 

By Problem 10 in §5, this definition agrees with Definition 1 §5, but is no longer limited to the case E^{\prime}=E^{n}\left(C^{n}\right). See also Problems 1 and 2 below.

We now obtain the following result.

Theorem \PageIndex{1}

Let E^{\prime} and E be complete. If f : E^{\prime} \rightarrow E is of class C D^{1} at \vec{p} and if d f(\vec{p} ; \cdot) is bijective (§6), then f is one-to-one on some globe \overline{G}=\overline{G_{\vec{p}}}(\delta).

Thus f "locally" resembles df (\vec{p} ; \cdot) in this respect.

Proof

Set \phi=d f(\vec{p} ; \cdot) and

\left\|\phi^{-1}\right\|=\frac{1}{\varepsilon}

(cf. Theorem 2 of §6).

By Definition 1, fix \delta>0 so that for \vec{x} \in \overline{G}=\overline{G_{\vec{p}}(\delta)}.

\|d f(\vec{x} ; \cdot)-\phi\|<\frac{1}{2} \varepsilon.

Then by Note 5 in §2,

(\forall \vec{x} \in \overline{G})\left(\forall \vec{u} \in E^{\prime}\right) \quad|d f(\vec{x} ; \vec{u})-\phi(\vec{u})| \leq \frac{1}{2} \varepsilon|\vec{u}|.

Now fix any \vec{r}, \vec{s} \in \overline{G}, \vec{r} \neq \vec{s}, and set \vec{u}=\vec{r}-\vec{s} \neq 0. Again, by Note 5 in §2,

|\vec{u}|=\left|\phi^{-1}(\phi(\vec{u}))\right| \leq\left\|\phi^{-1}\right\||\phi(\vec{u})|=\frac{1}{\varepsilon}|\phi(\vec{u})|;

so

0<\varepsilon|\vec{u}| \leq|\phi(\vec{u})|.

By convexity, \overline{G} \supseteq I=L[\vec{s}, \vec{r}], so (1) holds for \vec{x} \in I, \vec{x}=\vec{s}+t \vec{u}, 0 \leq t \leq 1.

Noting this, set

h(t)=f(\vec{s}+t \vec{u})-t \phi(\vec{u}), \quad t \in E^{1}.

Then for 0 \leq t \leq 1,

\begin{aligned} h^{\prime}(t) &=D_{\vec{u}} f(\vec{s}+t \vec{u})-\phi(\vec{u}) \\ &=d f(\vec{s}+t \vec{u} ; \vec{u})-\phi(\vec{u}). \end{aligned}

(Verify!) Thus by (1) and (2),

\begin{aligned} \sup _{0 \leq t \leq 1}\left|h^{\prime}(t)\right| &=\sup _{0 \leq t \leq 1}|d f(\vec{s}+t \vec{u} ; \vec{u})-\phi(\vec{u})| \\ & \leq \frac{\varepsilon}{2}|\vec{u}| \leq \frac{1}{2}|\phi(\vec{u})|. \end{aligned}

(Explain!) Now, by Corollary 1 in Chapter 5, §4,

|h(1)-h(0)| \leq(1-0) \cdot \sup _{0 \leq t \leq 1}\left|h^{\prime}(t)\right| \leq \frac{1}{2}|\phi(\vec{u})|.

As h(0)=f(\vec{s}) and

h(1)=f(\vec{s}+\vec{u})-\phi(\vec{u})=f(\vec{r})-\phi(\vec{u}),

we obtain (even if \vec{r}=\vec{s})

|f(\vec{r})-f(\vec{s})-\phi(\vec{u})| \leq \frac{1}{2}|\phi(\vec{u})| \quad(\vec{r}, \vec{s} \in \overline{G}, \vec{u}=\vec{r}-\vec{s}).

But by the triangle law,

|\phi(\vec{u})|-|f(\vec{r})-f(\vec{s})| \leq|f(\vec{r})-f(\vec{s})-\phi(\vec{u})|.

Thus

|f(\vec{r})-f(\vec{s})| \geq \frac{1}{2}|\phi(\vec{u})| \geq \frac{1}{2} \varepsilon|\vec{u}|=\frac{1}{2} \varepsilon|\vec{r}-\vec{s}|

by (2).

Hence f(\vec{r}) \neq f(\vec{s}) whenever \vec{r} \neq \vec{s} in \overline{G}; so f is one-to-one on \overline{G}, as claimed.\quad \square

Corollary \PageIndex{1}

Under the assumptions of Theorem 1, the maps f and f^{-1} (the inverse of f restricted to \overline{G}) are uniformly continuous on \overline{G} and f[\overline{G}], respectively.

Proof

By (3),

\begin{aligned}|f(\vec{r})-f(\vec{s})| & \leq|\phi(\vec{u})|+\frac{1}{2}|\phi(\vec{u})| \\ & \leq|2 \phi(\vec{u})| \\ & \leq 2\|\phi\||\vec{u}| \\ &=2\|\phi\||\vec{r}-\vec{s}| \quad(\vec{r}, \vec{s} \in \overline{G}). \end{aligned}

This implies uniform continuity for f. (Why?)

Next, let g=f^{-1} on H=f[\overline{G}].

If \vec{x}, \vec{y} \in H, let \vec{r}=g(\vec{x}) and \vec{s}=g(\vec{y}); so \vec{r}, \vec{s} \in \overline{G}, with \vec{x}=f(\vec{r}) and \vec{y}=f(\vec{s}). Hence by (4),

|\vec{x}-\vec{y}| \geq \frac{1}{2} \varepsilon|g(\vec{x})-g(\vec{y})|,

proving all for g, too.\quad \square

Again, f resembles \phi which is uniformly continuous, along with \phi^{-1}.

II. We introduce the following definition.

Definition 2

A map f :(S, \rho) \rightarrow\left(T, \rho^{\prime}\right) is closed (open) on D \subseteq S iff, for any X \subseteq D the set f[X] is closed (open) in T whenever X is so in S.

Note that continuous maps have such a property for inverse images (Problem 15 in Chapter 4, §2).

Corollary \PageIndex{2}

Under the assumptions of Theorem 1, f is closed on \overline{G}, and so the set f[\overline{G}] is closed in E.

Similarly for the map f^{-1} on f[\overline{G}].

Proof for E^{\prime}=E=E^{n}\left(C^{n}\right) (for the general case, see Problem 6)

Given any closed X \subseteq \overline{G}, we must show that f[X] is closed in E.

Now, as \overline{G} is closed and bounded, it is compact (Theorem 4 of Chapter 4, §6).

So also is X (Theorem 1 in Chapter 4, §6), and so is f[X] (Theorem 1 of Chapter 4, §8).

By Theorem 2 in Chapter 4, §6, f[X] is closed, as required.\quad \square

For the rest of this section, we shall set E^{\prime}=E=E^{n}\left(C^{n}\right).

Theorem \PageIndex{2}

If E^{\prime}=E=E^{n}\left(C^{n}\right) in Theorem 1, with other assumptions unchanged, then f is open on the globe G=G_{\vec{p}}(\delta), with \delta sufficiently small.

Proof

We first prove the following lemma.

Lemma

f[G] contains a globe G_{\vec{q}}(\alpha) where \vec{q}=f(\vec{p}).

Proof

Indeed, let

\alpha=\frac{1}{4} \varepsilon \delta,

where \delta and \varepsilon are as in the proof of Theorem 1. (We continue the notation and formulas of that proof.)

Fix any \vec{c} \in G_{\vec{q}}(\alpha); so

|\vec{c}-\vec{q}|<\alpha=\frac{1}{4} \varepsilon \delta.

Set h=|f-\vec{c}| on E^{\prime}. As f is uniformly continuous on \overline{G}, so is h.

Now, \overline{G} is compact in E^{n}\left(C^{n}\right); so Theorem 2(ii) in Chapter 4, §8, yields a point \vec{r} \in \overline{G} such that

h(\vec{r})=\min h[\overline{G}].

We claim that \vec{r} is in G (the interior of \overline{G}).

Otherwise, |\vec{r}-\vec{p}|=\delta ; for by (4),

\begin{aligned} 2 \alpha=\frac{1}{2} \varepsilon \delta=\frac{1}{2} \varepsilon|\vec{r}-\vec{p}| & \leq|f(\vec{r})-f(\vec{p})| \\ & \leq|f(\vec{r})-\vec{c}|+|\vec{c}-f(\vec{p})| \\ &=h(\vec{r})+h(\vec{p}). \end{aligned}

But

h(\vec{p})=|\vec{c}-f(\vec{p})|=|\vec{c}-\vec{q}|<\alpha;

and so (7) yields

h(\vec{p})<\alpha<h(\vec{r}),

contrary to the minimality of h(\vec{r}) (see (6)). Thus |\vec{r}-\vec{p}| cannot equal \delta.

We obtain |\vec{r}-\vec{p}|<\delta, so \vec{r} \in G_{\vec{p}}(\delta)=G and f(\vec{r}) \in f[G]. We shall now show that \vec{c}=f(\vec{r}).

To this end, we set \vec{v}=\vec{c}-f(\vec{r}) and prove that \vec{v}=\overrightarrow{0}. Let

\vec{u}=\phi^{-1}(\vec{v}),

where

\phi=d f(\vec{p} ; \cdot),

as before. Then

\vec{v}=\phi(\vec{u})=d f(\vec{p} ; \vec{u}).

With \vec{r} as above, fix some

\vec{s}=\vec{r}+t \vec{u} \quad(0<t<1)

with t so small that \vec{s} \in G also. Then by formula (3),

|f(\vec{s})-f(\vec{r})-\phi(t \vec{u})| \leq \frac{1}{2}|t \vec{v}|;

also,

|f(\vec{r})-\vec{c}+\phi(t \vec{u})|=(1-t)|\vec{v}|=(1-t) h(\vec{r})

by our choice of \vec{v}, \vec{u} and h. Hence by the triangle law,

h(\vec{s})=|f(\vec{s})-\vec{c}| \leq\left(1-\frac{1}{2} t\right) h(\vec{r}).

(Verify!)

As 0<t<1, this implies h(\vec{r})=0 (otherwise, h(\vec{s})<h(\vec{r}), violating (6)).

Thus, indeed,

|\vec{v}|=|f(\vec{r})-\vec{c}|=0,

i.e.,

\vec{c}=f(\vec{r}) \in f[G] \quad \text { for } \vec{r} \in G.

But \vec{c} was an arbitrary point of G_{\vec{q}}(\alpha). Hence

G_{\vec{q}}(\alpha) \subseteq f[G],

proving the lemma.\quad \square

Proof of Theorem 2. The lemma shows that f(\vec{p}) is in the interior of f[G] if \vec{p}, f, d f(\vec{p} ; \cdot), and \delta are as in Theorem 1.

But Definition 1 implies that here f \in C D^{1} on all of G (see Problem 1).

Also, d f(\vec{x} ; \cdot) is bijective for any \vec{x} \in G by our choice of G and Theorems 1 and 2 in §6.

Thus f maps all \vec{x} \in G onto interior points of f[G]; i.e., f maps any open set X \subseteq G onto an open f[X], as required.\quad \square

Note 1. A map

f :(S, \rho) \underset{\text { onto }}{\longleftrightarrow} (T, \rho^{\prime})

is both open and closed ("clopen") iff f^{-1} is continuous - see Problem 15(iv)(v) in Chapter 4, §2, interchanging f and f^{-1}.

Thus \phi=d f(\vec{p} ; \cdot) in Theorem 1 is "clopen" on all of E^{\prime}.

Again, f locally resembles d f(\vec{p} ; \cdot).

III. The Inverse Function Theorem. We now further pursue these ideas.

Theorem \PageIndex{3} (inverse functions)

Under the assumptions of Theorem 2, let g be the inverse of f_{G}\left(f \text { restricted to } G=G_{\vec{p}}(\delta)\right).

Then g \in C D^{1} on f[G] and d g(\vec{y} ; \cdot) is the inverse of d f(\vec{x} ; \cdot) whenever \vec{x}=g(\vec{y}), \vec{x} \in G.

Briefly: "The differential of the inverse is the inverse of the differential."

Proof

Fix any \vec{y} \in f[G] and \vec{x}=g(\vec{y}) ; so \vec{y}=f(\vec{x}) and \vec{x} \in G. Let U=d f(\vec{x} ; \cdot).

As noted above, U is bijective for every \vec{x} \in G by Theorems 1 and 2 in §6; so we may set V=U^{-1}. We must show that V=d g(\vec{y} ; \cdot).

To do this, give \vec{y} an arbitrary (variable) increment \Delta \vec{y}, so small that \vec{y}+\Delta \vec{y} stays in f[G] (an open set by Theorem 2).

As g and f_{G} are one-to-one, \Delta \vec{y} uniquely determines

\Delta \vec{x}=g(\vec{y}+\Delta \vec{y})-g(\vec{y})=\vec{t},

and vice versa:

\Delta \vec{y}=f(\vec{x}+\vec{t})-f(\vec{x}).

Here \Delta \vec{y} and \vec{t} are the mutually corresponding increments of \vec{y}=f(\vec{x}) and \vec{x}=g(\vec{y}). By continuity, \vec{y} \rightarrow \overrightarrow{0} iff \vec{t} \rightarrow \overrightarrow{0}.

As U=d f(\vec{x} ; \cdot),

\lim _{\vec{t} \rightarrow \overline{0}} \frac{1}{|\vec{t}|}|f(\vec{x}+\vec{t})-f(\vec{t})-U(\vec{t})|=0,

or

\lim _{\vec{t} \rightarrow \overrightarrow{0}} \frac{1}{|\vec{t}|}|F(\vec{t})|=0,

where

F(\vec{t})=f(\vec{x}+\vec{t})-f(\vec{t})-U(\vec{t}).

As V=U^{-1}, we have

V(U(\vec{t}))=\vec{t}=g(\vec{y}+\Delta \vec{y})-g(\vec{y}).

So from (9),

\begin{aligned} V(F(\vec{t})) &=V(\Delta \vec{y})-\vec{t} \\ &=V(\Delta \vec{y})-[g(\vec{y}+\Delta \vec{y})-g(\vec{y})]; \end{aligned}

that is,

\frac{1}{|\Delta \vec{y}|}|g(\vec{y}+\Delta \vec{y})-g(\vec{y})-V(\Delta \vec{y})|=\frac{|V(F(\vec{t}))|}{|\Delta \vec{y}|}, \quad \Delta \vec{y} \neq \overrightarrow{0}.

Now, formula (4), with \vec{r}=\vec{x}, \vec{s}=\vec{x}+\vec{t}, and \vec{u}=\vec{t}, shows that

|f(\vec{x}+\vec{t})-f(\vec{x})| \geq \frac{1}{2} \varepsilon|\vec{t}|;

i.e., |\Delta \vec{y}| \geq \frac{1}{2} \varepsilon|\vec{t}|. Hence by (8),

\frac{|V(F(\vec{t}))|}{|\Delta \vec{y}|} \leq \frac{|V(F(\vec{t}) |}{\frac{1}{2} \varepsilon|\vec{t}|}=\frac{2}{\varepsilon}\left|V\left(\frac{1}{|\vec{t}|} F(\vec{t})\right)\right| \leq \frac{2}{\varepsilon}\|V\| \frac{1}{|\vec{t}|}|F(\vec{t})| \rightarrow 0 \text { as } \vec{t} \rightarrow \overrightarrow{0}.

Since \vec{t} \rightarrow \overrightarrow{0} as \Delta \vec{y} \rightarrow \overrightarrow{0} (change of variables!), the expression (10) tends to 0 as \Delta \vec{y} \rightarrow \overrightarrow{0}.

By definition, then, g is differentiable at \vec{y}, with d g(\vec{y};)=V=U^{-1}.

Moreover, Corollary 3 in §6, applies here. Thus

\left(\forall \delta^{\prime}>0\right)\left(\exists \delta^{\prime \prime}>0\right) \quad\|U-W\|<\delta^{\prime \prime} \Rightarrow\left\|U^{-1}-W^{-1}\right\|<\delta^{\prime}.

Taking here U^{-1}=d g(\vec{y}) and W^{-1}=d g(\vec{y}+\Delta \vec{y}), we see that g \in C D^{1} near \vec{y}. This completes the proof.\quad \square

Note 2. If E^{\prime}=E=E^{n}\left(C^{n}\right), the bijectivity of \phi=d f(\vec{p} ; \cdot) is equivalent to

\operatorname{det}[\phi]=\operatorname{det}\left[f^{\prime}(\vec{p})\right] \neq 0

(Theorem 1 of §6).

In this case, the fact that f is one-to-one on G=G_{\vec{p}}(\delta) means, componentwise (see Note 3 in §6), that the system of n equations

f_{i}(\vec{x})=f\left(x_{1}, \ldots, x_{n}\right)=y_{i}, \quad i=1, \ldots, n,

has a unique solution for the n unknowns x_{k} as long as

\left(y_{1}, \ldots, y_{n}\right)=\vec{y} \in f[G].

Theorem 3 shows that this solution has the form

x_{k}=g_{k}(\vec{y}), \quad k=1, \ldots, n,

where the g_{k} are of class C D^{1} on f[G] provided the f_{i} are of class C D^{1} near \vec{p} and det \left[f^{\prime}(\vec{p})\right] \neq 0. Here

\operatorname{det}\left[f^{\prime}(\vec{p})\right]=J_{f}(\vec{p}),

as in §6.

Thus again f "locally" resembles a linear map, \phi=d f(\vec{p} ; \cdot).

IV. The Implicit Function Theorem. Generalizing, we now ask, what about solving n equations in n+m unknowns x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}? Say, we want to solve

f_{k}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)=0, \quad k=1,2, \ldots, n,

for the first n unknowns (or variables) x_{k}, thus expressing them as

x_{k}=H_{k}\left(y_{1}, \ldots, y_{m}\right), \quad k=1, \ldots, n,

with H_{k} : E^{m} \rightarrow E^{1} or H_{k} : C^{m} \rightarrow C.

Let us set \vec{x}=\left(x_{1}, \ldots, x_{n}\right), \vec{y}=\left(y_{1}, \ldots, y_{m}\right), and

(\vec{x}, \vec{y})=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)

so that (\vec{x}, \vec{y}) \in E^{n+m}\left(C^{n+m}\right).

Thus the system of equations (11) simplifies to

f_{k}(\vec{x}, \vec{y})=0, \quad k=1, \ldots, n

or

f(\vec{x}, \vec{y})=\overrightarrow{0},

where f=\left(f_{1}, \ldots, f_{n}\right) is a map of E^{n+m}\left(C^{n+m}\right) into E^{n}\left(C^{n}\right) ; f is a function of n+m variables, but it has n components f_{k}; i.e.,

f(\vec{x}, \vec{y})=f\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)

is a vector in E^{n}\left(C^{n}\right).

Theorem \PageIndex{4} (implicit functions)

Let E^{\prime}=E^{n+m}\left(C^{n+m}\right), E=E^{n}\left(C^{n}\right), and let f : E^{\prime} \rightarrow E be of class C D^{1} near

(\vec{p}, \vec{q})=\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{m}\right), \quad \vec{p} \in E^{n}\left(C^{n}\right), \vec{q} \in E^{m}\left(C^{m}\right).

Let [\phi] be the n \times n matrix

\left(D_{j} f_{k}(\vec{p}, \vec{q})\right), \quad j, k=1, \ldots, n.

If \operatorname{det}[\phi] \neq 0 and if f(\vec{p}, \vec{q})=\overrightarrow{0}, then there are open sets

P \subseteq E^{n}\left(C^{n}\right) \text { and } Q \subseteq E^{m}\left(C^{m}\right),

with \vec{p} \in P and \vec{q} \in Q, for which there is a unique map

H : Q \rightarrow P

with

f(H(\vec{y}), \vec{y})=\overrightarrow{0}

for all \vec{y} \in Q; furthermore, H \in C D^{1} on Q.

Thus \vec{x}=H(\vec{y}) is a solution of (11) in vector form.

Proof

With the above notation, set

F(\vec{x}, \vec{y})=(f(\vec{x}, \vec{y}), \vec{y}), \quad F : E^{\prime} \rightarrow E^{\prime}.

Then

F(\vec{p}, \vec{q})=(f(\vec{p}, \vec{q}), \vec{q})=(\overrightarrow{0}, \vec{q}),

since f(\vec{p}, \vec{q})=\overrightarrow{0}.

As f \in C D^{1} near (\vec{p}, \vec{q}), so is F (verify componentwise via Problem 9(ii) in §3 and Definition 1 of §5).

By Theorem 4, §3, \operatorname{det}\left[F^{\prime}(\vec{p}, \vec{q})\right]=\operatorname{det}[\phi] \neq 0 (explain!).

Thus Theorem 1 above shows that F is one-to-one on some globe G about (\vec{p}, \vec{q}).

Clearly G contains an open interval about (\vec{p}, \vec{q}). We denote it by P \times Q where \vec{p} \in P, \vec{q} \in Q ; P is open in E^{n}\left(C^{n}\right) and Q is open in E^{m}\left(C^{m}\right).

By Theorem 3, F_{P \times Q} (F restricted to P \times Q) has an inverse

g : A \underset{\text { onto }}{\longleftrightarrow} P \times Q,

where A=F[P \times Q] is open in E^{\prime} (Theorem 2), and g \in C D^{1} on A. Let the map u=\left(g_{1}, \ldots, g_{n}\right) comprise the first n components of g (exactly as f comprises the first n components of F ).

Then

g(\vec{x}, \vec{y})=(u(\vec{x}, \vec{y}), \vec{y})

exactly as F(\vec{x}, \vec{y})=(f(\vec{x}, \vec{y}), \vec{y}). Also, u : A \rightarrow P is of class C D^{1} on A, as g is (explain!).

Now set

H(\vec{y})=u(\overrightarrow{0}, \vec{y});

here \vec{y} \in Q, while

(\overrightarrow{0}, \vec{y}) \in A=F[P \times Q],

for F preserves \vec{y} (the last m coordinates). Also set

\alpha(\vec{x}, \vec{y})=\vec{x}.

Then f=\alpha \circ F (why?), and

f(H(\vec{y}), \vec{y})=f(u(\overrightarrow{0}, \vec{y}), \vec{y})=f(g(\overrightarrow{0}, \vec{y}))=\alpha(F(g(\overrightarrow{0}, \vec{y}))=\alpha(\overrightarrow{0}, \vec{y})=\overrightarrow{0}

by our choice of \alpha and g (inverse to F). Thus

f(H(\vec{y}), \vec{y})=\overrightarrow{0}, \quad \vec{y} \in Q,

as desired.

Moreover, as H(\vec{y})=u(\overrightarrow{0}, \vec{y}), we have

\frac{\partial}{\partial y_{i}} H(\vec{y})=\frac{\partial}{\partial y_{i}} u(\overrightarrow{0}, \vec{y}), \quad \vec{y} \in Q, i \leq m.

As u \in C D^{1}, all \partial u / \partial y_{i} are continuous (Definition 1 in §5); hence so are the \partial H / \partial y_{i}. Thus by Theorem 3 in §3, H \in C D^{1} on Q.

Finally, H is unique for the given P, Q; for

\begin{aligned} f(\vec{x}, \vec{y})=\overrightarrow{0} & \Longrightarrow(f(\vec{x}, \vec{y}), \vec{y})=(\overrightarrow{0}, \vec{y}) \\ & \Longrightarrow F(\vec{x}, \vec{y})=(\overrightarrow{0}, \vec{y}) \\ & \Longrightarrow g(F(\vec{x}, \vec{y}))=g(\overrightarrow{0}, \vec{y}) \\ & \Longrightarrow(\vec{x}, \vec{y})=g(\overrightarrow{0}, \vec{y})=(u(\overrightarrow{0}, \vec{y}), \vec{y}) \\ & \Longrightarrow \vec{x}=u(\overrightarrow{0}, \vec{y})=H(\vec{y}). \end{aligned}

Thus f(\vec{x}, \vec{y})=\overrightarrow{0} implies \vec{x}=H(\vec{y}); so H(\vec{y}) is the only solution for \vec{x}. \quad \square

Note 3. H is said to be implicitly defined by the equation f(\vec{x}, \vec{y})=\overrightarrow{0}. In this sense we say that H(\vec{y}) is an implicit function, given by f(\vec{x}, \vec{y})=\overrightarrow{0}.

Similarly, under suitable assumptions, f(\vec{x}, \vec{y})=\overrightarrow{0} defines \vec{y} as a function of \vec{x}.

Note 4. While H is unique for a given neighborhood P \times Q of (\vec{p}, \vec{q}), another implicit function may result if P \times Q or (\vec{p}, \vec{q}) is changed.

For example, let

f(x, y)=x^{2}+y^{2}-25

(a polynomial; hence f \in C D^{1} on all of E^{2}). Geometrically, x^{2}+y^{2}-25=0 describes a circle.

Solving for x, we get x=\pm \sqrt{25-y^{2}}. Thus we have two functions:

H_{1}(y)=+\sqrt{25-y^{2}}

and

H_{2}(y)=-\sqrt{25-y^{2}}.

If P \times Q is in the upper part of the circle, the resulting function is H_{1}. Otherwise, it is H_{2}. See Figure 28.

Screen Shot 2019-06-27 at 2.03.56 PM.png

V. Implicit Differentiation. Theorem 4 only states the existence (and uniqueness) of a solution, but does not show how to find it, in general.

The knowledge itself that H \in C D^{1} exists, however, enables us to use its derivative or partials and compute it by implicit differentiation, known from calculus.

Examples

(a) Let f(x, y)=x^{2}+y^{2}-25=0, as above.

This time treating y as an implicit function of x, y=H(x), and writing y^{\prime} for H^{\prime}(x), we differentiate both sides of (x^{2}+y^{2}-25=0\) with respect to x, using the chain rule for the term y^{2}=[H(x)]^{2}.

This yields 2 x+2 y y^{\prime}=0, whence y^{\prime}=-x / y.

Actually (see Note 4), two functions are involved: y=\pm \sqrt{25-x^{2}}; but both satisfy x^{2}+y^{2}-25=0; so the result y^{\prime}=-x / y applies to both.

Of course, this method is possible only if the derivative y^{\prime} is known to exist. This is why Theorem 4 is important.

(b) Let

f(x, y, z)=x^{2}+y^{2}+z^{2}-1=0, \quad x, y, z \in E^{1}.

Again f satisfies Theorem 4 for suitable x, y, and z.

Setting z=H(x, y), differentiate the equation f(x, y, z)=0 partially with respect to x and y. From the resulting two equations, obtain \frac{\partial z}{\partial x} and \frac{\partial z}{\partial y}.


This page titled 6.7: Inverse and Implicit Functions. Open and Closed Maps is shared under a CC BY 3.0 license and was authored, remixed, and/or curated by Elias Zakon (The Trilla Group (support by Saylor Foundation)) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?