Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

5.3: Complex Eigenvalues

( \newcommand{\kernel}{\mathrm{null}\,}\)

In the last section, we found that if

x=Ax

is a homogeneous linear system of differential equations, and r is an eigenvalue with eigenvector z, then

x=zert

is a solution. (Note that x and z are vectors.) In this discussion we will consider the case where r is a complex number

r=l+mi.

First we know that if r=l+mi is a complex eigenvalue with eigenvector z, then

r=lmi

the complex conjugate of r is also an eigenvalue with eigenvector z. We can write the solution as

x=k1ze(l+mi)t+k2ze(lmi)t.

We can use Euler's formula to get

x=k1zelt(cos(mt)+isin(mt))+k2zelt(cos(mt)isin(mt)).

Writing

z=a+aiandz=aai

we get

x=k1(a+bi)elt(cos(mt)+isin(mt))+k2(abi)elt(cos(mt)isin(mt)).

Now multiplying and separating into real and imaginary parts, we get

x=elt[k1(acos(mt)bsin(mt)+i(asin(mt)+bcos(mt))+k2(acos(mt)bsin(mt)i(asin(mt)+bcos(mt))].

Now let

k1+k2=2c1and(k1k2)i=2c2.

Then we get

x=elt[c1(acos(mt)bsin(mt)+c2(asin(mt)+bcos(mt)))].

Example 5.3.1

Solve the system of differential equations

x=2x+6y

y=3x+4y.

Solution

We have

A=(2634)

To find the eigenvalues, we find the determinant of

Arl=(2r634r).

We get

(2r)(4r)+18=r22r+10=0.

The quadratic formula gives the roots

r=1+3iandr=13i.

Now we find and eigenvector corresponding to the eigenvalue 1+3i. Plugging into ArI, we get

A(1+3i)l=(33i6333i).

The top row gives

(33i)x+6y=0

or

(1+i)x2y=0.

An eigenvector is

z=(21+i)=(21)+i(01).

Hence the general solution is

x=et[c1((21)cos(3t)(01)sin(3t))+c2((21)sin(3t)+(01)cos(3t))].

This can be written as

x=et[2c1cos(3t)+2c2sin(2t)]

y=et[c1(cos(3t)+sin(3t))+c2(sin(3t)+cos(3t))].

Below is the phase portrait

comple6.jpg

Clearly the solutions spiral out from the origin, which is called a spiral node. The spiral occurs because of the complex eigenvalues and it goes outward because the real part of the eigenvalue is positive. If the real part of the eigenvalue had been negative, then the spiral would have been inward.

Contributors and Attributions


This page titled 5.3: Complex Eigenvalues is shared under a not declared license and was authored, remixed, and/or curated by Larry Green.

Support Center

How can we help?