Skip to main content
Mathematics LibreTexts

6.8: Step Functions

  • Page ID
    395
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In this discussion, we will investigate piecewise defined functions and their Laplace Transforms. We start with the fundamental piecewise defined function, the Heaviside function.

    Definition: The Heaviside Function

    The Heaviside function, also called the unit step function, is defined by

    \[ u_c(t) = \left\{\begin{aligned}
    &1 && t <c \\
    &0 && t \ge c
    \end{aligned}
    \right.\]

    for \(c \ge 0\).

    The Heaviside function \(y = u_c(t)\) and \(y = 1 - u_c(t)\) are graphed below.

    stepFu2.gif stepFu3.gif

    Example \(\PageIndex{1}\)

    We can write the function

    \[ f(t) = \left\{\begin{aligned}
    &3 && 0 \le x < 2 \\ &e^x && 2 \le x < 5 \\ &0 && 5 \le x
    \end{aligned}
    \right.\]

    in terms of Heaviside functions.

    Solution

    We tackle the functions in parts. The function that is 1 from 0 to 2, and 0 otherwise is

    \[1 - u_2(x) .\]

    Multiplying by 3 gives

    \[ 3\left(1 - u_2(x)\right) = 3 - 3u_2(x) .\]

    To get the function that is 1 between 2 and 5 and 0 otherwise, we subtract

    \[ u_2(x) - u_5(x) .\]

    Now multiply by \(e^x\) to get

    \[ e^x(u_2(x) - u_5(x)) = e^x u_2(x) - e^x u_5(x). \]

    Adding these together gives

    \[\begin{align} f(x) &= 3 - 3u_2(x) + e^x\, u_2(x) - e^x \,u_5(x) \\ &= 3 + (e^x - 3)\,u_2(x) - e^x\, u_5(x) . \end{align}\]

    We can find the Laplace transform of \(u_c(t)\) by integrating

    \[ \mathcal{L}\{u_c(t)\} = \int_0^{\infty} e^{st} u_c(t) \, dt \]

    \[ = \int _c^{\infty} e^{st} dt = \dfrac{e^{-cs}}{s} \]

    \[ L \{ u_c(t)\} = \dfrac{e^{-cs}}{s}. \]

    In practice, we want to find the Laplace transform of a more general piecewise defined function such as

    \[ f(t) = \left\{\begin{aligned}
    &0 && x < \pi \\ &\sin x && x \ge \pi
    \end{aligned}
    \right.\]

    This type of function occurs in electronics when a switch is suddenly turned on after one second and a forcing function is applied. We can write

    \[ f(x) = u_p(x) \sin x.\]

    We will be interested in the Laplace transform of a product of the Heaviside function with a continuous function. The result that we need is

    \[ \mathcal{L}\{(u_c(t) f(t - c)\} = e^{-cs} \mathcal{L}\{f(t)\} .\]

    By taking inverses we get that if \(F(s) = \mathcal{L}\{f(t)\}\), then

    \[ L^{-1}\{e^{-cs}F(s)\} = u_c(t)f(t - c) .\]

    Proof

    We use the definition to get

    \[ \mathcal{L}\{u_c(t)f(t-c)\} = \int _0^{\infty} e^{-st}u_c(t)f(t-c)\,dt\]

    substitute \(\nu=t-c\)

    \[ = \int _c^{\infty} e^{-st}f(t-c)\,dt = \int _0^{\infty} e^{-(\nu +c)s}f(\nu)\,d\nu \]

    \[ e^{-cs}\int _0^{\infty} e^{-s\nu}f(\nu)\,d\nu = e^{-cs}F(s).\]

    Example \(\PageIndex{2}\)

    Find the Laplace transform of

    \[ f(t) = \left\{\begin{aligned}
    &0 && x < \pi \\ &\sin x && x \ge \pi.
    \end{aligned}
    \right.\]

    Solution

    We use that fact that

    \[ f(x) = u_p(x) \sin x = -u_p(x) \sin[(x - p)] . \]

    Now we can use the formula to get that

    \[ \mathcal{L}\{f(x)\} = -\mathcal{L}\{u_p(x) \sin[(x - p)]\} = -e^{-cs} \mathcal{L}\{\sin x\}. \]

    By the table of Laplace Transforms, we get

    \[ = \dfrac{-e^{-cs}}{s^2 + 1} .\]

    Contributors and Attributions


    This page titled 6.8: Step Functions is shared under a not declared license and was authored, remixed, and/or curated by Larry Green.

    • Was this article helpful?