Skip to main content
Mathematics LibreTexts

4: Growth

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Population growth is a current topic in the media today. The world population is growing by over 70 million people every year. Predicting populations in the future can have an impact on how countries plan to manage resources for more people. The tools needed to help make predictions about future populations are growth models like the exponential function. This chapter will discuss real world phenomena, like population growth and radioactive decay, using three different growth models.

    The growth functions to be examined are linear, exponential, and logistic growth models. Each type of model will be used when data behaves in a specific way and for different types of scenarios. Data that grows by the same amount in each iteration uses a different model than data that increases by a percentage.

    Thumbnail: False color time-lapse video of E. coli colony growing on microscope slide. This growth can be model with first order logistic equation. Added approximate scale bar based on the approximate length of 2.0 μm of E. coli bacteria. (CC BY-SA 4.0 International; Stewart EJ, Madden R, Paul G, Taddei F).

    This page titled 4: Growth is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Maxie Inigo, Jennifer Jameson, Kathryn Kozak, Maya Lanzetta, & Kim Sonier via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.