9.3: Apportionment Paradoxes
- Page ID
- 31997
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Each of the apportionment methods has at least one weakness. Some potentially violate the quota rule and some are subject to one of the three paradoxes.
The quota rule says that each state should be given either its upper quota of seats or its lower quota of seats. |
Example \(\PageIndex{1}\): Quota Rule Violation
A small college has three departments. Department A has 98 faculty, Department B has 689 faculty, and Department C has 212 faculty. The college has a faculty senate with 100 representatives. Use Jefferson’s method with a modified divisor of d = 9.83 to apportion the 100 representatives among the departments.
State | A | B | C | Total |
Population | 98 | 689 | 212 | 999 |
Standard Quota | 9.810 | 68.969 | 21.221 | 100.000 |
d = 9.83 | 9.969 | 70.092 | 21.567 | |
quota | 9.000 | 70.000 | 21.000 | 100 |
District B has a standard quota of 68.969 so it should get either its lower quota, 68, or its upper quota, 69, seats. Using this method, District B received 70 seats, one more than its upper quota. This is a Quota Rule violation.
The population paradox occurs when a state’s population increases but its allocated number of seats decreases. |
Example \(\PageIndex{2}\): Population Paradox
A mom decides to split 11 candy bars among three children based on the number of minutes they spend on chores this week. Abby spends 54 minutes, Bobby spends 243 minutes and Charley spends 703 minutes. Near the end of the week, Mom reminds the children of the deal and they each do some extra work. Abby does an extra two minutes, Bobby an extra 12 minutes and Charley an extra 86 minutes. Use Hamilton’s method to apportion the candy bars both before and after the extra work.
State | Abby | Bobby | Charley | Total |
Population | 54 | 243 | 703 | 1,000 |
Standard Quota | 0.594 | 2.673 | 7.734 | 11.000 |
Lower Quota | 0 | 2 | 7 | 9 |
Apportionment | 0 | 3 | 8 | 11 |
With the extra work:
Abby now has 54 + 2 = 56 minutes
Bobby has 243 + 12 = 255
Charley has 703 + 86 = 789 minutes
State | Abby | Bobby | Charley | Total |
Population | 56 | 255 | 789 | 1,100 |
Standard Quota | 0.560 | 2.550 | 7.890 | 11.000 |
Lower Quota | 0 | 2 | 7 | 9 |
Apportionment | 1 | 2 | 8 | 11 |
Abby’s time only increased by 3.7% while Bobby’s time increased by 4.9%. However, Abby gained a candy bar while Bobby lost one. This is an example of the Population Paradox.
The new states paradox occurs when a new state is added along with additional seats and existing states lose seats. |
Example \(\PageIndex{3}\): New-States Paradox
A small city is made up of three districts and governed by a committee with 100 members. District A has a population of 5310, District B has a population of 1330, and District C has a population of 3308. The city annexes a small area, District D with a population of 500. At the same time the number of committee members is increased by five. Use Hamilton’s method to find the apportionment before and after the annexation.
State | A | B | C | Total |
Population | 5,310 | 1,330 | 3,308 | 9,948 |
Standard Quota | 53.378 | 13.370 | 33.253 | 100.000 |
Lower Quota | 53 | 13 | 33 | 99 |
Apportionment | 54 | 13 | 33 | 100 |
State | A | B | C | D | Total |
Population | 5,310 | 1,330 | 3,308 | 500 | 10,448 |
Standard Quota | 53.364 | 13.366 | 33.245 | 5.025 | 105.000 |
Lower Quota | 53 | 13 | 33 | 5 | 104 |
Apportionment | 53 | 14 | 33 | 5 | 105 |
District D has a population of 500 so it should get five seats. When District D is added with its five seats, District A loses a seat and District B gains a seat. This is an example of the New-States Paradox.
In 1980, Michael Balinski (State University of New York at Stony Brook) and H. Peyton Young (Johns Hopkins University) proved that all apportionment methods either violate the quota rule or suffer from one of the paradoxes. This means that it is impossible to find the “perfect” apportionment method. The methods and their potential flaws are listed in the following table.
Paradoxes | ||||
Method | Quota Rule | Alabama | Population | New-States |
Hamilton | No violations | Yes | Yes | Yes |
Jefferson | Upper-quota violations | No | No | No |
Adams | Lower-quota violations | No | No | No |
Webster | Lower- and upper-quota violations | No | No | No |
Huntington-Hill | Lower- and upper-quota violations | No | No | No |