Skip to main content
Mathematics LibreTexts

3.9: Exponents

  • Page ID
    129529
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    An illustration shows the solar system. The sun, Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune are labeled.
    Figure 3.45 Astronomical distances are written using exponents. (credit: “Our Solar System (Artist's Concept)” by NASA/Jet Propulsion Laboratory-Caltech/Public Domain)

    Learning Objectives

    After completing this section, you should be able to:

    1. Apply the rules of exponents to simplifying expressions.

    Sometimes, we look for shorthand when writing or expressing something that simply takes too long. The use of LOL and tl;dr. This shorthand only works if everyone reading the shorthand knows what it stands for. Using exponents is a similar instance. Writing out a long string of a number times itself over and over takes too much time, and eventually one would forget how many of the value has been written or read. For example, 8×8×8×8×8×8×8×8×8×8×8×8×8×8×8×8×8×8×88×8×8×8×8×8×8×8×8×8×8×8×8×8×8×8×8×8×8. There has to be a shorter and more efficient way to write 8 times itself 1, 2, 3….hmmmm, 19 times.

    And that’s the role that exponents play in mathematics. They are shorthand for multiplying a number by itself a number of times. Without it, calculations would become a mess and we’d have to write a lot more.

    Applying the Rules of Exponents to Simplify Expressions

    Squaring a number is multiplying it by itself, and has that name because it is the area of a square with that side length. Cubing a number is finding the volume of a cube with that length of sides. That’s why we refer to 5252 as five squared, or 103103 as ten cubed. Exponents represent that multiplication.

    Let’s remind ourselves of the terminology associated with exponents and what exponents represent. Suppose you want to multiply a number, let’s label that number aa, by itself some number of times. Let’s label the number of times bb. We denote that as abab. We say aa raised to the bbth power. When we write or see 7575, we call the 7 the base and we call 5 the exponent. What it represents is 7 multiplied by itself 5 times. This means exponents are used as a shorthand for repeated multiplications, where we write 75=7×7×7×7×775=7×7×7×7×7. We would write 7575 and say seven to the fifth power.

    Video

    Exponential Notation

    The definitions of base and exponent make it possible to understand the exponent rules.

    Product Rule for Exponents

    The first rule we examine is the product rule, anam=an+manam=an+m. This rule means that when we multiply a base raised to a power times the same base to another power, the result is the base raised to the sum of the powers. To demonstrate, consider 93×9593×95. If we apply the product rule to that we get 93×95=93+5=9893×95=93+5=98. This can be tested by looking at the multiplications that are represented. The 9393 is 9 times itself 3 times, while 9595 is 9 times itself 5 times. Substituting those into 93×9593×95 we see 93×95=(9×9×9)×(9×9×9×9×9)=9893×95=(9×9×9)×(9×9×9×9×9)=98, which is what the formula told us would happen.

    Checkpoint

    Caution: The product rule only applies when the bases are the same. If the bases are different, we do not apply this rule.

    FORMULA

    If a number, aa, raised to a power, nn, is then multiplied by aa raised to another power, mm, the result is anam=an+manam=an+m.

    Example 3.107

    Using the Product Rule for Exponents

    If possible, use the product rule to simplify the following:

    1. 219×2115219×2115
    2. 59×8459×84
    Answer

    1. We can apply the product rule to simplify the expression because the bases are the same and we are multiplying.

      219×2115=21(9+15)=2124219×2115=21(9+15)=2124

    2. Since the bases are not the same (one is 5, the other 8), this cannot be simplified using the product rule for exponents.

    Your Turn 3.107

    If possible, use the product rule to simplify the following:
    1.
    /**/{12^{13}} \times {12^8}/**/
    2.
    /**/{3^6} \times {4^{10}}/**/

    These rules can be applied to unknowns too.

    Example 3.108

    Using the Product Rule for Exponents of Unknowns

    Use the product rule to simplify a4×a10a4×a10.

    Answer

    The bases are the same, and we are multiplying, so we apply the multiplication rule to simplify the expression.

    a 4 × a 10 = a ( 4 + 10 ) = a 14 a 4 × a 10 = a ( 4 + 10 ) = a 14

    Your Turn 3.108

    1.
    Use the product rule to simplify /**/{b^6} \times {b^3}/**/.

    Quotient Rule for Exponents

    The next rule we examine is the quotient, or division, rule.

    FORMULA

    When a number, aa, raised to a power, nn, is divided by aa raised to another power, mm, then the result is anam=a(nm)anam=a(nm).

    This rule means that when we divide a base raised to a power by the same base to another power, the result is the base raised to the difference of the powers. To demonstrate, consider 14131461413146. If we apply the quotient rule to that, we get 1413146=14136=1471413146=14136=147. This can be tested by looking at the division that is represented. Remember, 14131413 is 14 multiplied to itself 13 times, while 146146 is 14 multiplied to itself 6 times. Substituting those into 14131461413146 gives the following:

    41346=4×4×4×4×4×4×4×4×4×4×4×4×44×4×4×4×4×441346=4×4×4×4×4×4×4×4×4×4×4×4×44×4×4×4×4×4

    We see here that there are a LOT of fours to be divided out.

    =4×4×4×4×4×4×4×4×4×4×4×4×44×4×4×4×4×4=4×4×4×4×4×4×41=4×4×4×4×4×4×4=4×4×4×4×4×4×4×4×4×4×4×4×44×4×4×4×4×4=4×4×4×4×4×4×41=4×4×4×4×4×4×4

    What remains is 4 to the 7th power, 4×4×4×4×4×4×4=474×4×4×4×4×4×4=47.

    All of the work above confirmed what the formula told us would be the result.

    Checkpoint

    Caution: The quotient rule only applies when the bases are the same. If the bases are different, we do not apply this rule.

    Example 3.109

    Using the Quotient Rule for Exponents

    Use the quotient rule to simplify 519511519511.

    Answer

    We can apply the quotient rule to simplify the expression since the bases are the same and we are dividing.

    5 19 5 11 = 5 ( 19 11 ) = 5 8 5 19 5 11 = 5 ( 19 11 ) = 5 8

    Your Turn 3.109

    1.
    Use the quotient rule to simplify /**/\frac
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[3]/section[4]/div/div/div/span/span[1], line 1, column 3
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[3]/section[4]/div/div/div/span/span[2], line 1, column 3
    
    /**/
    .

    Video

    Product and Quotient Rule for Exponents

    A natural consequence of the quotient rule is what it means to raise a non-zero number to the zeroth power. Let’s look at the simplification when the exponents are equal.

    3636=3(66)=303636=3(66)=30

    We know that a number divided by itself is 1, so 3636=13636=1. From that is must be that 3636=30=13636=30=1. This provides the rule for a number raised to the power 0: a0a0.

    FORMULA

    If you have a non-zero number aa, then a0=1a0=1.

    Distributive Rule for Exponents

    The next rule we look to is a distributive rule for exponents.

    FORMULA

    If you have a product, (a×b)(a×b), and raise it to an exponent, nn, then (a×b)n=an×bn(a×b)n=an×bn.

    This means that when we have two numbers multiplied together, and that is raised to a power, it is the same as raising each of the numbers to the same power first, then multiplying. For example, (3×7)4=34×74(3×7)4=34×74. This can be explained using the definition of exponents and multiplying all the factors.

    (3×7)4=(3×7)×(3×7)×(3×7)×(3×7)(3×7)4=(3×7)×(3×7)×(3×7)×(3×7)

    We may change the order in which numbers are multiplied. This is the commutative property of the real numbers. This can be written as 3×3×3×3×7×7×7×73×3×3×3×7×7×7×7. Using exponents, that shortens to 34×7434×74.

    This also works in the other direction, an×bn=(a×b)nan×bn=(a×b)n. Read this way, if we have one base raised to an exponent, and another base raised to the same exponent, we can multiply the bases and raise that product to the shared exponent. For instance, 78×118=(7×11)8=77878×118=(7×11)8=778.

    Checkpoint

    Caution: The exponent distributive rule, an×bn=(a×b)nan×bn=(a×b)n, only works if the exponents are the same.

    Example 3.110

    Using the Distributive Rule for Exponents

    Use the exponent distributive rule to expand (6×13)7(6×13)7.

    Answer

    Applying the distributive rule to the product, we get (6×13)7=67×137(6×13)7=67×137.

    Your Turn 3.110

    1.
    Use the exponent distributive rule to expand /**/{\left( {2 \times 19} \right)^{14}}/**/.

    Example 3.111

    Using the Distributive Rule for Exponents

    Use the exponent distributive rule to expand (c×d)10(c×d)10.

    Answer

    Applying the distributive rule to the product, we get (c×d)10=c10×d10(c×d)10=c10×d10.

    Your Turn 3.111

    1.
    Use the exponent distributive rule to expand /**/{\left( {a \times b} \right)^6}/**/.

    This distribution also works for quotients. A fraction raised to an exponent equals the numerator raised to the exponent divided by the denominator raised to the exponent. For example, (35)7=3757(35)7=3757. Demonstrating this is similar to the previous rule.

    FORMULA

    When you have a fraction, abab, raised to an exponent, nn, then (ab)n=anbn(ab)n=anbn.

    Example 3.112

    Using the Distributive Rule for Exponents with Fractions

    Use the exponent distributive rule to expand the following:

    1. (49)6(49)6
    2. (3b)11(3b)11
    Answer

    1. Applying the distributive rule to the quotient, we get (49)6=4696(49)6=4696.
    2. Applying the distributive rule to the quotient, we get (3b)11=311b11(3b)11=311b11.

    Your Turn 3.112

    Use the exponent distributive rule to expand the following:
    1.
    /**/{\left( {\frac14{5}} \right)^9}/**/
    2.
    /**/{\left( {\frac{a}18} \right)^5}/**/

    Video

    Fraction Raised to a Power

    Power Rule

    In the previous two sets of rules, we’ve seen exponents applied to products and quotients. Now we look to exponents applied to other exponents. For example, (36)4=3(6×4)=324(36)4=3(6×4)=324. This can be explained by examining what the outer exponent does. We raise 3636 to the fourth power, so we multiply 3636 by itself 4 times, (36)4=36×36×36×36(36)4=36×36×36×36. Now if we apply the product rule for exponents, this becomes 3(6+6+6+6)=3243(6+6+6+6)=324.

    FORMULA

    If you raise a non-zero base, say aa, to an exponent nn, and raise that to another exponent, mm, you get the base raised to the product of the exponents, which is (an)m=a(n×m)(an)m=a(n×m).

    Example 3.113

    Raising an Exponent to an Exponent

    Expand the following:

    1. (67)3(67)3
    2. (b12)4(b12)4
    Answer

    1. Using the power rule of exponents, (67)3=6(7×3)=621(67)3=6(7×3)=621.
    2. Using the power rule of exponents, (b12)4=b(12×4)=b48(b12)4=b(12×4)=b48.

    Your Turn 3.113

    Expand the following:
    1.
    /**/{\left(
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[3]/div/div[2]/section[3]/div/div/div/div/span/span, line 1, column 4
    
    \right)^{12}}/**/
    2.
    /**/{\left({a^7}\right)^6}/**/

    Negative Exponent Rule

    Up until now, we’ve only looked at positive exponents. The last exponent rule we look at is what negative exponents represent. Recall the quotient rule: anam=a(n+m)anam=a(n+m). What would happen if the exponent in the denominator was larger than that in the numerator? For example, 45474547. If we apply the quotient rule, we obtain 4547=457=424547=457=42. We need to make sense of that negative exponent. To do so, we can expand the quotient and see what happens: 4547=4×4×4×4×44×4×4×4×4×4×44547=4×4×4×4×44×4×4×4×4×4×4. When we divide out common factors, only two factors of 4 are left in the denominator, as we see here:14×414×4. Using exponent notation, this is 142142. Since 4242 and 142142 represent the same number, 45474547, they are equal. This demonstrates how negative exponents are defined.

    FORMULA

    an=1anan=1an provided that a0a0.

    Similarly, 1an=an1an=an.

    Example 3.114

    Eliminating Negative Exponents

    Convert the following to expressions with no negative exponent:

    1. 34×5834×58
    2. a9×b5a9×b5
    3. 7c27c2
    Answer

    1. Using the negative exponent rule on the 5858 and multiplying, 34×58=34×158=345834×58=34×158=3458.
    2. Using the negative exponent rule on the a9a9 and multiplying, a9×b5=1a9×b5=b5a9a9×b5=1a9×b5=b5a9.
    3. Begin by rewriting the expression as 7c2=71×1c27c2=71×1c2. Apply the negative exponent rule to 1c21c2 in the expression, which becomes 71×1c2=7×c271×1c2=7×c2, which has no negative exponents.

    Your Turn 3.114

    Convert the following to expressions with no negative exponent:
    1.
    /**/{12^{ - 3}} \times {7^5}/**/
    2.
    /**/{c^{ - 7}} \times {5^3}/**/

    Example 3.115

    Eliminating Denominators by Using Negative Exponents

    Use negative exponents to rewrite the following expressions with no denominator:

    1. 7313973139
    2. c4d8c4d8
    Answer

    1. Rewrite the expression 7313973139 as 731×1139731×1139. Then use the definition of negative exponents to rewrite the 11391139 as 139139. Last, multiply, yielding 731×1139=73×139731×1139=73×139.
    2. Rewrite the expression c4d8c4d8 as c41×1d8c41×1d8. Then use the definition of negative exponents to rewrite the 1d81d8 as d8d8. Last, multiply, yielding c41×1d8=c4×d−8c41×1d8=c4×d−8.

    Your Turn 3.115

    Use negative exponents to rewrite the following expressions with no denominator:
    1.
    /**/\frac
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[3]/div/div[2]/div[2]/section[5]/div/div/div/div/span/span[1], line 1, column 3
    
    ParseError: "}" expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[3]/div/div[2]/div[2]/section[5]/div/div/div/div/span/span[2], line 1, column 2
    
    /**/
    2.
    /**/\frac
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[3]/div/div[2]/div[2]/div[2]/div/span/span[1], line 1, column 3
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[3]/div/div[2]/div[2]/div[2]/div/span/span[2], line 1, column 3
    
    /**/

    The table below shows a summary of the exponent rules from this section.

    Rule Example In Words
    Product Rule anam=an+manam=an+m 82×85=8782×85=87 A base raised to a power, times the same based raised to another power, is the base raised to the sum of the powers.
    Quotient Rule anam=a(nm)anam=a(nm) 11141112=111211141112=1112 A base raised to a power, divided by the same based raised to another power, is the base raised to the difference of the powers.
    Zero Power Rule
    a0=1a0=1 provided that a1a1
    4120=14120=1 Any non-zero number raised to the zeroth power equals 1.
    Distributive Rule, Multiplication (a×b)n=an×bn(a×b)n=an×bn (14×31)9=149×319(14×31)9=149×319 Exponents distribute across multiplication.
    Distributive Rule, Division (ab)n=anbn(ab)n=anbn (6291)8=628918(6291)8=628918 Exponents distribute across division.
    Power Rule (an)m=a(n×m)(an)m=a(n×m) (59)15=5135(59)15=5135 A base raised to a power, raised to another power, is the base raised to the first power times the second power.
    Negative Exponent Rule an=1anan=1an
    provided that a0a0
    68=16868=168
    1127=1271127=127
    A base raised to a negative exponent is 1 divided by the base raised to the positive power, and vice versa.

    These rules often occur in tandem with each other, but it requires that you carefully apply the rules.

    Example 3.116

    Simplifying Expressions Using Exponent Rules

    Simplify the following:

    1. (42×793)5(42×793)5
    2. (5a4b9)6(5a4b9)6
    Answer

    1. Step 1: To simplify this, we start by distributing the power 5 across the quotient:

      (42×793)5=(42×7)5(93)5(42×793)5=(42×7)5(93)5

      Step 2: We distribute the power 5 in the numerator across that multiplication:

      (42×793)5=(42×7)(93)55=(42)5×75(93)5(42×793)5=(42×7)(93)55=(42)5×75(93)5

      Step 3: We apply the power rule where indicated:

      (42×793)5=(42×7)(93)55=(42)5×75(93)5=4(2×5)×759(3×5)=410×75915(42×793)5=(42×7)(93)55=(42)5×75(93)5=4(2×5)×759(3×5)=410×75915

    2. Step 1: To simplify this, we start by distributing the power 6 across the quotient:

      (5a4b9)9=(5×a4)6(b9)6(5a4b9)9=(5×a4)6(b9)6

      Step 2: We distribute the power 5 in the numerator across that multiplication:

      (5×a4)6(b9)6=(5)6×(a4)6(b9)6(5×a4)6(b9)6=(5)6×(a4)6(b9)6

      Step 3: We apply the power rule where indicated:

      (5)6×(a4)6(b9)6=56a24b54(5)6×(a4)6(b9)6=56a24b54

    Your Turn 3.116

    Simplify the following:
    1.
    /**/{\left( {\frac
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[3]/div/div[2]/div[2]/section[7]/div/div/div/div/span/span[1], line 1, column 3
    
    ParseError: "}" expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[3]/div/div[2]/div[2]/section[7]/div/div/div/div/span/span[2], line 1, column 2
    
    } \right)^8}/**/
    2.
    /**/{\left( {\frac{4}
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[3]/div/div[2]/div[2]/div[4]/div/span/span, line 1, column 3
    
    } \right)^2}/**/

    Video

    Simplifying Expressions with Exponents

    Check Your Understanding

    40.
    Simplify /**/{a^3} \times {a^5}/**/.
    41.
    Simplify /**/\frac
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[2]/div/div/span/span[1], line 1, column 3
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[2]/div/div/span/span[2], line 1, column 3
    
    /**/
    .
    42.
    Simplify /**/{\left( {6b} \right)^9}/**/.
    43.
    Simplify /**/{\left( {\frac{c}{7}} \right)^3}/**/.
    44.
    Simplify /**/{\left( {\frac
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[5]/div/div/span/span[1], line 1, column 4
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[5]/div/div/span/span[2], line 1, column 4
    
    } \right)^6}/**/
    .

    Section 3.8 Exercises

    For the following exercises, simplify the expression.
    1.
    /**/{4^5} \times {4^2}/**/
    2.
    /**/{3^3} \times {3^6}/**/
    3.
    /**/{a^2} \times {a^7}/**/
    4.
    /**/{b^7} \times {b^{12}}/**/
    5.
    /**/\frac
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[9]/div/span/span[1], line 1, column 3
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[9]/div/span/span[2], line 1, column 3
    
    /**/
    6.
    /**/\frac
    ParseError: "}" expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[10]/div/span/span[1], line 1, column 2
    
    ParseError: "}" expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[10]/div/span/span[2], line 1, column 2
    
    /**/
    7.
    /**/\frac
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[11]/div/span/span[1], line 1, column 3
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[11]/div/span/span[2], line 1, column 3
    
    /**/
    8.
    /**/\frac
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[12]/div/span/span[1], line 1, column 3
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[12]/div/span/span[2], line 1, column 3
    
    /**/
    9.
    /**/\frac
    ParseError: "}" expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[13]/div/span/span[1], line 1, column 2
    
    ParseError: "}" expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[13]/div/span/span[2], line 1, column 2
    
    /**/
    10.
    /**/\frac
    ParseError: "}" expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[14]/div/span/span[1], line 1, column 2
    
    ParseError: "}" expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[14]/div/span/span[2], line 1, column 2
    
    /**/
    11.
    /**/\frac
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[15]/div/span/span[1], line 1, column 3
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[15]/div/span/span[2], line 1, column 3
    
    /**/
    12.
    /**/\frac
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[16]/div/span/span[1], line 1, column 3
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[16]/div/span/span[2], line 1, column 3
    
    /**/
    13.
    /**/{\left( {4 \times 3} \right)^4}/**/
    14.
    /**/{\left( {5 \times 8} \right)^7}/**/
    15.
    /**/{\left( {3c} \right)^6}/**/
    16.
    /**/{\left( {n \times m} \right)^9}/**/
    17.
    /**/{\left( {\frac{7}{2}} \right)^8}/**/
    18.
    /**/{\left( {\frac{a}{6}} \right)^{11}}/**/
    19.
    /**/{\left( {\frac{4}{c}} \right)^9}/**/
    20.
    /**/{\left(
    ParseError: EOF expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[24]/div/span/span, line 1, column 2
    
    \right)^8}/**/
    21.
    /**/{\left(
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[25]/div/span/span, line 1, column 4
    
    \right)^3}/**/
    22.
    /**/{\left(
    ParseError: EOF expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[26]/div/span/span, line 1, column 2
    
    \right)^2}/**/
    23.
    /**/{\left(
    ParseError: EOF expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[27]/div/span/span, line 1, column 2
    
    \right)^{11}}/**/
    24.
    /**/{\left( {\frac
    ParseError: EOF expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[28]/div/span/span, line 1, column 2
    
    {5}} \right)^4}/**/
    25.
    /**/{\left( {\frac{a}
    ParseError: EOF expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[29]/div/span/span, line 1, column 2
    
    } \right)^5}/**/
    26.
    /**/{\left( {\frac
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[30]/div/span/span, line 1, column 4
    
    {7}} \right)^3}/**/
    27.
    /**/{\left( {\frac
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[31]/div/span/span[1], line 1, column 4
    
    11} \right)^8}/**/
    28.
    /**/{\left( {\frac
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[32]/div/span/span[1], line 1, column 4
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[32]/div/span/span[2], line 1, column 3
    
    } \right)^3}/**/
    29.
    /**/{\left( {\frac
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[33]/div/span/span[1], line 1, column 4
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[33]/div/span/span[2], line 1, column 3
    
    } \right)^{12}}/**/
    For the following exercises, rewrite the expression without a denominator.
    30.
    /**/\frac{3}
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[34]/div[2]/div/span/span, line 1, column 3
    
    /**/
    31.
    /**/\frac{5}
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[35]/div/span/span, line 1, column 3
    
    /**/
    32.
    /**/\frac{4}
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[36]/div/span/span, line 1, column 3
    
    /**/
    33.
    /**/\frac{9}
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[37]/div/span/span, line 1, column 3
    
    /**/
    For the following exercises, rewrite the expression without negative exponents.
    34.
    /**/{12^4} \times {5^{ - 3}}/**/
    35.
    /**/3{b^{ - 12}}/**/
    36.
    /**/\frac15
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[40]/div/span/span[2], line 1, column 3
    
    /**/
    37.
    /**/\frac
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[41]/div/span/span[1], line 1, column 4
    
    ParseError: colon expected (click for details)
    Callstack:
        at (Bookshelves/Applied_Mathematics/Contemporary_Mathematics_(OpenStax)/03:_Real_Number_Systems_and_Number_Theory/3.09:__Exponents), /content/body/div[4]/div[41]/div/span/span[2], line 1, column 3
    
    /**/

    This page titled 3.9: Exponents is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?