35.1: Tables, Equations, and Graphs, Oh My!
- Page ID
- 40621
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Lesson
Let's explore some equations from real-world situations.
Exercise \(\PageIndex{1}\): Matching Equations and Tables
Match each equation with a table that represents the same relationship. Be prepared to explain your reasoning.
\(\begin{array}{lllllll}{S-2=T}&{\qquad}&{G=J+13}&{\qquad}&{P=I-47.50}&{\qquad}&{C+273.15=K}\\{e=6s}&{\qquad}&{m=8.96V}&{\qquad}&{y=\frac{1}{12}x}&{\qquad}&{t=\frac{d}{2.5}}\\{g=28.35z}&{}&{}&{}&{}&{}&{}\end{array}\)
Table 1:
independent variable | dependent variable |
---|---|
\(20\) | \(8\) |
\(58.85\) | \(23.54\) |
\(804\) | \(321.6\) |
Table 2:
independent variable | dependent variable |
---|---|
\(5\) | \(18\) |
\(36\) | \(49\) |
\(75\) | \(88\) |
Table 3:
independent variable | dependent variable |
---|---|
\(2.5\) | \(22.4\) |
\(20\) | \(179.2\) |
\(75\) | \(672\) |
Table 4:
independent variable | dependent variable |
---|---|
\(20\) | \(1\frac{2}{3}\) |
\(36\) | \(3\) |
\(804\) | \(67\) |
Table 5:
independent variable | dependent variable |
---|---|
\(58.85\) | \(11.35\) |
\(175.5\) | \(128\) |
\(804\) | \(756.6\) |
Table 6:
independent variable | dependent variable |
---|---|
\(2.5\) | \(275.65\) |
\(20\) | \(293.15\) |
\(58.85\) | \(332\) |
Table 7:
independent variable | dependent variable |
---|---|
\(5\) | \(3\) |
\(20\) | \(18\) |
\(36\) | \(34\) |
Table 8:
independent variable | dependent variable |
---|---|
\(2.6\) | \(73.71\) |
\(20\) | \(567\) |
\(36\) | \(1,020,6\) |
Table 9:
independent variable | dependent variable |
---|---|
\(2.6\) | \(15.6\) |
\(36\) | \(216\) |
\(58.85\) | \(353.1\) |
Exercise \(\PageIndex{2}\): Getting to Know an Equation
The equations in the previous activity represent situations.
- \(S-2=T\) where \(S\) is the number of sides on a polygon and \(T\) is the number of triangles you can draw inside it (from one vertex to the others, without overlapping)
- \(G=J+13\) where \(G\) is a day in the Gregorian calendar and \(J\) is the same day in the Julian calendar
- \(P=I-47.50\) where \(I\) is the amount of income and \(P\) is the profit after $47.50 in expenses
- \(C+273.15=K\) where \(C\) is a temperature in degrees Celsius and \(K\) is the same temperature in Kelvin
- \(e=6s\) where \(e\) is the total edge length of a regular tetrahedron and \(s\) is the length of one side
- \(m=8.96V\) where \(V\) is the volume of a piece of copper and \(m\) is its mass
- \(y=\frac{1}{12}x\) where \(x\) is the number of eggs and \(y\) is how many dozens that makes
- \(t=\frac{d}{2.5}\) where \(t\) is the amount of time it takes in seconds to jog a distance of \(d\) meters at a constant speed of 2.5 meters per second
- \(g=28.35z\) where \(g\) is the mass in grams and \(z\) is the same amount in ounces
Your teacher will assign you one of these equations to examine more closely.
- Rewrite your equation using words. Use words like product, sum, difference, quotient, and term.
- In the previous activity, you matched equations and tables. Copy the values from the table that matched your assigned equation into the first 3 rows of this table. Make sure to label what each column represents.
independent variable:
________________________dependent variable:
________________________\(60\) \(300\) Table \(\PageIndex{10}\) - Select one of the first 3 rows of the table and explain what those values mean in this situation.
- Use your equation to find the values that complete the last 2 rows of the table. Explain your reasoning.
- On graph paper, create a graph that represents this relationship. Make sure to label your axes.
Exercise \(\PageIndex{3}\): Sharing Your Equation with Others
Create a visual display of your assigned relationships that includes:
- your equation along with an explanation of each variable
- a verbal description of the relationship
- your table
- your graph
If you have time, research more about your relationship and add more details or illustrations to help explain the situation.