6.E: Applications of Antidifferentiation (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
6.1: Substitution
Terms and Concepts
1. Substitution "undoes" what derivative Rule?
2. T/F: One can use algebra to rewrite the integrand of an integral to make it easier to evaluate.
Problems
In Exercises 3-14, evaluate the indefinite integrand to develop an understanding of Substitution.
3. ∫3x2(x3−5)7dx
4. ∫(2x−5)(x2−5x+7)3dx
5. ∫x(x2+1)8dx
6. ∫(12x+14)(3x2+7x+7)3dx
7. ∫12x+7dx
8. ∫1√2x+3dx
9. ∫x√x+3dx
10. ∫x3−x√xdx
11. ∫e√x√xdx
12. ∫x4√x5+1dx
13. ∫1x+1x2dx
14. ∫ln(x)xdx
In Exercises 15-23, use Substitution to evaluate the indefinite integral involving trigonometric functions.
15. ∫sin2(x)cos(x)dx
16. ∫cos(3−6x)dx
17. ∫sec2(4−x)dx
18. ∫sec(2x)dx
19. ∫tan2(x)sec2(x)dx
20. ∫xcos(x2)dx
21. ∫tan2(x)dx
22. ∫cotxdx. Do not just refer to Theorem 45 for the answer; justify it through Substitution.
23. ∫cscxdx. Do not just refer to Theorem 45 for the answer; justify it through Substitution.
In Exercises 24-30, use Substitution to evaluate the indefinite integral involving exponential functions.
24. ∫e3x−1dx
25. ∫ex3x2dx
26. ∫ex2−2x+1(x−1)dx
27. ∫ex+1exdx
28. ∫ex−e−xe2xdx
29. ∫33xdx
30. ∫42xdx
In Exercises 31-34, use Substitution to evaluate the indefinite integral involving logarithmic functions.
31. ∫lnxxdx
32. ∫(lnx)2xdx
33. ∫(lnx)3xdx
34. ∫1xln(x2)dx
In Exercises 35-40, use Substitution to evaluate the indefinite integral involving rational functions.
35. ∫x2+3x+1xdx
36. ∫x3+x2+x+1xdx
37. ∫x3−1x+1dx
38. ∫x2+2x−5x−3dx
39. ∫3x2−5x+7x+1dx
40. ∫x2+2x+1x3+3x2+3xdx
In Exercises 41-50, use Substitution to evaluate the indefinite integral inverse trigonometric functions.
41. ∫7x2+7dx
42. ∫3√9−x2dx
43. ∫14√5−x2dx
44. ∫2x√x2−9dx
45. ∫5√x4−16x2dx
46. ∫x√1−x4dx
47. ∫1x2−2x+8dx
48. ∫2√−x2+6x+7dx
49. ∫3√−x2+8x+9dx
50. ∫5x2+6x+34dx
In Exercises 51-75, evaluate the indefinite integral.
51. ∫x2(x3+3)2dx
52. ∫(3x2+2x)(5x3+5x2+2)8dx
53. ∫x√1−x2dx
54. ∫x2csc2(x3+1)dx
55. ∫sin(x)√cos(x)dx
56. ∫1x−5dx
57. ∫73x+2dx
58. ∫3x3+4x2+2x−22x2+3x+5dx
59. ∫2x+7x2+7x+3dx
60. ∫9(2x+3)3x2+9x+7dx
61. ∫−x3+14x2−46x−7x2−7x+1dx
62. ∫xx2+81dx
63. ∫24x2+1dx
64. ∫1x√4x2−1dx
65. ∫1√16−9x2dx
66. ∫3x−2x2−2x+10dx
67. ∫7−2xx2+12x+61dx
68. ∫x2+5x−2x2−10x+32dx
69. ∫x3x2+9dx
70. ∫x3−xx2+4x+9dx
71. ∫sin(x)cos2(x)+1dx
72. ∫cos(x)sin2(x)+1dx
73. ∫cos(x)1−sin2(x)dx
74. ∫3x−3√x2−2x−6dx
75. ∫x−3√x2−6x+8dx
In Exercises 76-83, evaluate the definite integral.
76. ∫311x−5dx
77. ∫62x√x−2dx
78. ∫π/2−π/2sin2(x)cos(x)dx
79. ∫102x(1−x2)4dx
80. ∫−1−2(x+1)ex2+2x+1dx
81. ∫1−11x+x2dx
82. ∫421x2−6x+10dx
83. ∫√311√4−x2dx
6.2: Integration by Parts
Terms and Concepts
1. T/F: Integration by Parts is useful in evaluating integrands that contain products of function.
2. T/F: Integration by Parts can be thought of as the "opposite of the Chain Rule."
3. For what is "LIATE" useful?
Problems
In Exercises 4-33, evaluate the given indefinite integral.
4. ∫xsinxdx
5. ∫xe−xdx
6. ∫x2sinxdx
7. ∫x3sinxdx
8. ∫xex2dx
9. ∫x3exdx
10. ∫xe−2xdx
11. ∫exsinxdx
12. ∫e2xcosxdx
13. ∫e2xsin(3x)dx
14. ∫e5xcos(5x)dx
15. ∫sinxcosxdx
16. ∫sin−1xdx
17. ∫tan−1(2x)dx
18. ∫xtan−1xdx
19. ∫sin−1xdx
20. ∫xlnxdx
21. ∫(x−2)lnxdx
22. ∫xln(x−1)dx
23. ∫xln(x2)dx
24. ∫x2lnxdx
25. ∫(lnx)2dx
26. ∫(ln(x+1))2dx
27. ∫xsec2xdx
28. ∫xcsc2xdx
29. ∫x√x−2dx
30. ∫x√x2−2dx
31. ∫secxtanxdx
32. ∫xsecxtanxdx
33. ∫xcscxcotxdx
In Exercises 34-38, evaluate the indefinite integral after first making a substitution.
34. ∫sin(lnx)dx
35. ∫sin(√x)dx
36. ∫ln(√x)dx
37. ∫e√xdx
38. ∫elnxdx
In Exercises 39-47, evaluate the definite integral. Note: the corresponding indefinite integrals appear in Exercises 4-12.
39. ∫π0xsinxdx
40. ∫1−1xe−xdx
41. ∫−π/4π/4x2sinxdx
42. ∫π/2−π/2x3sinxdx
43. ∫√ln20xex2dx
44. ∫10x3exdx
45. ∫21xe−2xdx
46. ∫π0exsinxdx
47. ∫π/2−π/2e2xcosxdx
6.3: Trigonometric Integrals
Terms and Concepts
1. T/F: ∫sin2(x)cos2xdx cannot be evaluate using the techniques described in this section since both powers of sinx and cosx are even.
2. T/F: sin3xcos3xdx cannot be evaluated using the techniques described in this section since both powers of sinx and cosx are odd.
3. T/F: This section addresses how to evaluate indefinite integrals such as ∫sin5xtan3xdx.
Problems
In Exercises 4-26, evaluate the indefinite integral.
4. ∫sinxcos4xdx
5. ∫sin3xcosxdx
6. ∫sin3xcos2xdx
7. ∫sin3xcos3xdx
8. ∫sin6xcos5xdx
9. ∫sin2xcos7xdx
10. ∫sin2xcos2xdx
11. ∫sin(5x)cos(3x)dx
12. ∫sin(x)cos(2x)dx
13. ∫sin(3x)sin(7x)dx
14. ∫sin(πx)sin(2πx)dx
15. ∫cos(x)cos(2x)dx
16. ∫cos(π2x)cos(πx)dx
17. ∫tan4xsec2xdx
18. ∫tan2xsec4xdx
19. ∫tan3xsec4xdx
20. ∫tan3xsec2xdx
21. ∫tan3xsec3xdx
22. ∫tan5xsec5xdx
23. ∫tan4(x)dx
24. ∫sec5xdx
25. ∫tan2xsecxdx
26. ∫tan2xsec3xdx
In Exercises 27-33, evaluate the definite integral. Note: the corresponding indefinite integrals appear in the previous set.
27. ∫π0sinxcos4xdx
28. ∫π−πsin3xcosxdx
29. ∫π/2−π/2sin2xcos7xdx
30. ∫π/20sin(5x)cos(3x)dx
31. ∫π/2−π/2cos(x)cos(2x)dx
32. ∫π/40tan4xsec2xdx
33. ∫π/4−π/4tan2xsec4xdx
6.4: Trigonometric Substitution
Terms and Concepts
1. Trigonometric Substitution works on the same principles as Integration by Substitution, though it can feel "_____".
2. If one uses Trigonometric Substitution on an integrand containing √25−x2, then one should set x = ______.
3. Consider the Pythagorean Identity sin2θ+cos2θ=1.
(a) What identity is obtained when both sides are divided by cos2θ?
(b) Use the new identity to simplify 9tan2θ+9.
4. Why does Key Idea 13(a) state that √a2−x2=acosθ, and not |acosθ|?
Problems
In Exercises 5-16, apply Trigonometric Substitution to evaluate the indefinite integrals.
5. ∫√x2+1dx
6. ∫√x2+4dx
7. ∫√1−x2dx
8. ∫√9−x2dx
9. ∫√x2−1dx
10. ∫√x2−16dx
11. ∫√4x2+1dx
12. ∫√1−9x2dx
13. ∫√16x2−1dx
14. ∫3√x2+2dx
15. ∫3√7−x2dx
16. ∫5√x2−8dx
In Exercises 17-26, evaluate the indefinite integrals. Some may be evaluated without Trigonometric Substitution.
17. ∫√x2−11xdx
18. ∫1(x2+1)2dx
19. ∫x√x2−3dx
20. ∫x2√1−x2dx
21. ∫x(x2+0)3/2dx
22. ∫5x2√x2−10dx
23. ∫1(x2+4x+13)2dx
24. ∫x2(1−x2)−3/2dx
25. ∫√5−x27x2dx
26. ∫x2√x2+3dx
In Exercises 27-32, evaluate the definite integrals by making the proper trigonometric substitution and changing the bounds of integration. (Note: each of the corresponding indefinite integrals has appeared previously in the Exercise set.)
27. ∫1−1√1−x2dx
28. ∫84√x2−16dx
29. ∫20√x2+4dx
30. ∫1−11(x2+1)2dx
31. ∫1−1√9x2dx
32. ∫1−1x2√1−x2dx
6.5 Partial Fraction Decomposition
Terms and Concepts
1. Fill in the blank: Partial Fraction Decomposition is a method of rewriting _____ functions.
2. T/F: It is sometimes necessary to use polynomial division before using Partial Fraction Decomposition.
3. Decompose 1x2−3x without solving for the coefficients, as done in Example 181.
4. Decompose 7−xx2−9 without solving for the coefficients, as done in Example 181.
5. Decompose x−3x2−7 without solving for the coefficients, as done in Example 181.
6. Decompose 2x+5x3+7x without solving for the coefficients, as done in Example 181.
Problems
In Exercises 7-25, evaluate the indefinite integral.
7. ∫7x+7x2+3x−10dx
8. ∫7x−2x2+xdx
9. ∫−43x2−12dx
10. ∫x+7(x+5)2dx
11. ∫−3x−20(x+8)2dx
12. ∫9x2+11x+7x(x+1)2dx
13. ∫−12x2−x+33(x−1)(x+3)(3−2x)dx
14. ∫94x2−10x(7x+3)(5x−1)(3x−1)dx
15. ∫x2+2+1x2+x−2dx
16. ∫x3x2−2x−20dx
17. ∫2x2−4x+6x2−2x+3dx
18. ∫1x2+3x2+3xdx
19. ∫x2+x+5x2+4x+10dx
20. ∫12x2+21x+3(x+1)(3x2+5x−1)dx
21. ∫6x2+8x−4(x−3)(x2+6x+10)dx
22. ∫2x2+x+1(x+1)(x2+9)dx
23. ∫x2−20x−69(x−7)(x2+2x+17)dx
24. ∫9x2−60x+33(x−9)(x2−2x+11)dx
25. ∫6x2+45x+121(x+2)(x2+10x+27)dx
In Exercises 26-29, evaluate the definite integral.
26. ∫218x+21(x+2)(x+3)dx
27. ∫5014x+6(3x+2)(x+4)dx
28. ∫1−1x2+5x−5(x−10)(x2+4x+5)dx
29. ∫10x(x+1)(x2+2x+1)dx
6.6: Hyperbolic Functions
Terms and Concepts
1. In Key Idea 16, the equation ∫tanhxdx=ln(coshx)+C is given. Why is "ln|coshx|" not used -i.e., why are absolute values no necessary?
2. The hyperbolic functions are used to define points on the right hand portion of the hyperbola x2−y2=1, as shown in Figure 6.13. How can we use the hyperbolic functions to define points on the left hand portion of the hyperbola?
Problems
In Exercises 3-10, verify the given identity using Definition 23, as done in Example 186.
3. coth2x−csch 2x=1
4. cosh2x=cosh2x+sinh2x
5. cosh2x=cosh2x+12
6. sinh2x=cosh2x−12
7. ddx[sech x]=−sech xtanhx
8. ddx[cothx]=−sech xtanhx
9. ∫tanhxdx=ln(coshx)+C
10. ∫cothxdx=ln|sinhx|+C
In Exercises 11-21, find the derivative of the given function.
11. f(x)=cosh2x
12. f(x)=tanh(x2)
13. f(x)=ln(sinhx)
14. f(x)=sinhxcoshx
15. f(x)=xsinhx−coshx
16. f(x)=sech −1(x2)
17. f(x)=sinh−1(3x)
18. f(x)=cosh−1(2x2)
19. f(x)=tanh−1(x+5)
20. f(x)=tanh−1(cosx)
21. f(x)=cosh−1(secx)
In Exercises 22-26, find the equation of the line tangent to the function at the given x-value.
22. f(x)=sinhx at x=0
23. f(x)=coshx at x=ln2
24. f(x)=sech 2x at x=ln3
25. f(x)=sinh−1x at x=0
26. f(x)=cosh−1x at x=√2
In Exercises 27-40, evaluate the given indefinite integral.
27. ∫tanh(2x)dx
28. ∫cosh(3x−7)dx
29. ∫sinhxcoshxdx
30. ∫xcoshxdx
31. ∫xsinhxdx
32. ∫19−x2dx
33. ∫2x√x4−4dx
34. ∫√x√1+x3dx
35. ∫1x2−16dx
36. ∫1x2+xdx
37. ∫exx2x+1dx
38. ∫sinh−1xdx
39. ∫tanh−1xdx
40. ∫sech xdx (Hint: multiply by coshxcoshx; set u=sinhx.)
In Exercises 41-43, evaluate the given definite integral.
41. ∫1−1sinhxdx
42. ∫ln2−ln2coshxdx
43. ∫10tanh−1xdx.
6.7: L'Hopital's Rule
Terms and Concepts
1. List the different indeterminate forms described in this section.
2. T/F: l'Hopital's Rule provides a faster method of computing derivatives.
3. T/F: l'Hopitals Rule states that ddx(f(x)g(x))=f′(x)g′(x).
4. Explain what the indeterminate form "1∞" means.
5. Fill in the blanks" The Quotient Rule is applied to f(x)g(x) when taking _____; l'Hopital's Rule is applied when taking certain_______.
6. Create (but do not evaluate) a limit that returns "∞0".
7. Create a function f(x) such that limx→1f(x) returns "00".
Problems
In Exercises 8-52, evaluate the given limit.
8. limx→1x2+x−2x−1
9. limx→2x2+x−6x2−7x+10
10. limx→πsinxx−π
11. limx→π/4sinx−cosxcos(2x)
12. limx→0sin(5x)x
13. limx→0sin(2x)x+2
14. limx→0sin(2x)sin(3x)
15. limx→0sin(ax)sin(bx)
16. limx→0+ex−1x2
17. limx→0+ex−x−1x2
18. limx→0+x−sinxx3−x2
19. limx→∞x4ex
20. limx→∞√xex
21. limx→∞ex√x
22. limx→∞ex2x
23. limx→∞ex3x
24. limx→3x3−5x2+3x+9x3−7x2+15x−9
25. limx→−2x3+4x2+4xx3+7x2+16x+12
26. limx→∞lnxx
27. limx→∞ln(x2)x
28. limx→∞(lnx)2x
29. limx→0+x⋅lnx
30. limx→0+√x⋅lnx
31. limx→0+xe1/x
32. limx→∞x3−x2
33. limx→∞√x−lnx
34. limx→−∞xex
35. limx→0+1x2e−1/x
36. limx→0+(1+x)1/x
37. limx→0+(2x)x
38. limx→0+(2/x)x
39. limx→0+(sinx)x Hint: use the Squeeze Theorem.
40. limx→1+(1−x)1−x
41. limx→∞(x)1/x
42. limx→∞(1/x)x
43. limx→11(lnx)1−x
44. limx→∞(1+x)1/x
45. limx→∞(1+x2)1/x
46. limx→π/2tanxcosx
47. limx→π/2tanxsin(2x)
48. limx→1+1lnx−11−x
49. limx→3+5x2−9−xx−3
50. limx→∞xtan(1/x)
51. limx→∞(lnx)3x
52. limx→1x2+x−2lnx
6.8: Improper Integration
Terms and Concepts
1. The definite integral was defined with what two stipulations?
2. If limb→∞∫b0f(x)dx exists, then the integral ∫∞0f(x)dx is said to __________.
3. If ∫∞1f(x)dx=10, and 0≤g(x)≤f(x) for all x, then we know that ∫∞1g(x)dx ______.
4. For what values of p will ∫∞11xpdx converge?
5. For what values of p will ∫∞101xpdx converge?
6. For what values of p will ∫101xpdx converge?
Problems
In Exercises 7-33, evaluate the given improper integral.
7. ∫∞0e5−2xdx
8. ∫∞11x3dx
9. ∫∞1x−4dx
10. ∫∞−∞1x2+9dx
11. ∫0−∞2xdx
12. ∫0−∞(12)xdx
13. ∫∞−∞xx2+1dx
14. ∫∞−∞xx2+4dx
15. ∫∞21(x−1)2dx
16. ∫211(x−1)2dx
17. ∫∞21x−1dx
18. ∫211x−1dx
19. ∫1−11xdx
20. ∫311x−2dx
21. ∫π0sec2xdx
22. ∫1−21√|x|dx
23. ∫∞0xe−xdx
24. ∫∞0xe−x2dx
25. ∫∞−∞xe−x2dx
26. ∫∞−∞1ex+e−xdx
27. ∫10xlnxdx
28. ∫∞1lnxxdx
29. ∫10lnxdx
30. ∫∞1lnxx2dx
31. ∫∞1lnx√xdx
32. ∫∞0e−xsinxdx
33. ∫∞0e−xcosxdx
In Exercises 34-43, use the Direct Comparison Test or the Limit Comparison Test to determine whether the given definite integral converges or diverges. Clearly state what test is being used and what function the integrand is being compared to.
34. ∫∞103√3x2+2x−5dx
35. ∫∞24√7x3−xdx
36. ∫∞0√x+3√x3−x2+x+1dx
37. ∫∞1e−xlnxdx
38. ∫∞5e−x2+3x−1dx
39. ∫∞0√xexdx
40. ∫∞21x2+sinxdx
41. ∫∞0xx2+cosxdx
42. ∫∞01x+exdx
43. ∫∞01ex−xdx