Processing math: 56%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

6.E: Applications of Antidifferentiation (Exercises)

( \newcommand{\kernel}{\mathrm{null}\,}\)

6.1: Substitution

Terms and Concepts

1. Substitution "undoes" what derivative Rule?

2. T/F: One can use algebra to rewrite the integrand of an integral to make it easier to evaluate.

Problems

In Exercises 3-14, evaluate the indefinite integrand to develop an understanding of Substitution.

3. 3x2(x35)7dx

4. (2x5)(x25x+7)3dx

5. x(x2+1)8dx

6. (12x+14)(3x2+7x+7)3dx

7. 12x+7dx

8. 12x+3dx

9. xx+3dx

10. x3xxdx

11. exxdx

12. x4x5+1dx

13. 1x+1x2dx

14. ln(x)xdx

In Exercises 15-23, use Substitution to evaluate the indefinite integral involving trigonometric functions.

15. sin2(x)cos(x)dx

16. cos(36x)dx

17. sec2(4x)dx

18. sec(2x)dx

19. tan2(x)sec2(x)dx

20. xcos(x2)dx

21. tan2(x)dx

22. cotxdx. Do not just refer to Theorem 45 for the answer; justify it through Substitution.

23. cscxdx. Do not just refer to Theorem 45 for the answer; justify it through Substitution.

In Exercises 24-30, use Substitution to evaluate the indefinite integral involving exponential functions.

24. e3x1dx

25. ex3x2dx

26. ex22x+1(x1)dx

27. ex+1exdx

28. exexe2xdx

29. 33xdx

30. 42xdx

In Exercises 31-34, use Substitution to evaluate the indefinite integral involving logarithmic functions.

31. lnxxdx

32. (lnx)2xdx

33. (lnx)3xdx

34. 1xln(x2)dx

In Exercises 35-40, use Substitution to evaluate the indefinite integral involving rational functions.

35. x2+3x+1xdx

36. x3+x2+x+1xdx

37. x31x+1dx

38. x2+2x5x3dx

39. 3x25x+7x+1dx

40. x2+2x+1x3+3x2+3xdx

In Exercises 41-50, use Substitution to evaluate the indefinite integral inverse trigonometric functions.

41. 7x2+7dx

42. 39x2dx

43. 145x2dx

44. 2xx29dx

45. 5x416x2dx

46. x1x4dx

47. 1x22x+8dx

48. 2x2+6x+7dx

49. 3x2+8x+9dx

50. 5x2+6x+34dx

In Exercises 51-75, evaluate the indefinite integral.

51. x2(x3+3)2dx

52. (3x2+2x)(5x3+5x2+2)8dx

53. x1x2dx

54. x2csc2(x3+1)dx

55. sin(x)cos(x)dx

56. 1x5dx

57. 73x+2dx

58. 3x3+4x2+2x22x2+3x+5dx

59. 2x+7x2+7x+3dx

60. 9(2x+3)3x2+9x+7dx

61. x3+14x246x7x27x+1dx

62. xx2+81dx

63. 24x2+1dx

64. 1x4x21dx

65. 1169x2dx

66. 3x2x22x+10dx

67. 72xx2+12x+61dx

68. x2+5x2x210x+32dx

69. x3x2+9dx

70. x3xx2+4x+9dx

71. sin(x)cos2(x)+1dx

72. cos(x)sin2(x)+1dx

73. cos(x)1sin2(x)dx

74. 3x3x22x6dx

75. x3x26x+8dx

In Exercises 76-83, evaluate the definite integral.

76. 311x5dx

77. 62xx2dx

78. π/2π/2sin2(x)cos(x)dx

79. 102x(1x2)4dx

80. 12(x+1)ex2+2x+1dx

81. 111x+x2dx

82. 421x26x+10dx

83. 3114x2dx

6.2: Integration by Parts

Terms and Concepts

1. T/F: Integration by Parts is useful in evaluating integrands that contain products of function.

2. T/F: Integration by Parts can be thought of as the "opposite of the Chain Rule."

3. For what is "LIATE" useful?

Problems

In Exercises 4-33, evaluate the given indefinite integral.

4. xsinxdx

5. xexdx

6. x2sinxdx

7. x3sinxdx

8. xex2dx

9. x3exdx

10. xe2xdx

11. exsinxdx

12. e2xcosxdx

13. e2xsin(3x)dx

14. e5xcos(5x)dx

15. sinxcosxdx

16. sin1xdx

17. tan1(2x)dx

18. xtan1xdx

19. sin1xdx

20. xlnxdx

21. (x2)lnxdx

22. xln(x1)dx

23. xln(x2)dx

24. x2lnxdx

25. (lnx)2dx

26. (ln(x+1))2dx

27. xsec2xdx

28. xcsc2xdx

29. xx2dx

30. xx22dx

31. secxtanxdx

32. xsecxtanxdx

33. xcscxcotxdx

In Exercises 34-38, evaluate the indefinite integral after first making a substitution.

34. sin(lnx)dx

35. sin(x)dx

36. ln(x)dx

37. exdx

38. elnxdx

In Exercises 39-47, evaluate the definite integral. Note: the corresponding indefinite integrals appear in Exercises 4-12.

39. π0xsinxdx

40. 11xexdx

41. π/4π/4x2sinxdx

42. π/2π/2x3sinxdx

43. ln20xex2dx

44. 10x3exdx

45. 21xe2xdx

46. π0exsinxdx

47. π/2π/2e2xcosxdx

6.3: Trigonometric Integrals

Terms and Concepts

1. T/F: sin2(x)cos2xdx cannot be evaluate using the techniques described in this section since both powers of sinx and cosx are even.

2. T/F: sin3xcos3xdx cannot be evaluated using the techniques described in this section since both powers of sinx and cosx are odd.

3. T/F: This section addresses how to evaluate indefinite integrals such as sin5xtan3xdx.

Problems

In Exercises 4-26, evaluate the indefinite integral.

4. sinxcos4xdx

5. sin3xcosxdx

6. sin3xcos2xdx

7. sin3xcos3xdx

8. sin6xcos5xdx

9. sin2xcos7xdx

10. sin2xcos2xdx

11. sin(5x)cos(3x)dx

12. sin(x)cos(2x)dx

13. sin(3x)sin(7x)dx

14. sin(πx)sin(2πx)dx

15. cos(x)cos(2x)dx

16. cos(π2x)cos(πx)dx

17. tan4xsec2xdx

18. tan2xsec4xdx

19. tan3xsec4xdx

20. tan3xsec2xdx

21. tan3xsec3xdx

22. tan5xsec5xdx

23. tan4(x)dx

24. sec5xdx

25. tan2xsecxdx

26. tan2xsec3xdx

In Exercises 27-33, evaluate the definite integral. Note: the corresponding indefinite integrals appear in the previous set.

27. π0sinxcos4xdx

28. ππsin3xcosxdx

29. π/2π/2sin2xcos7xdx

30. π/20sin(5x)cos(3x)dx

31. π/2π/2cos(x)cos(2x)dx

32. π/40tan4xsec2xdx

33. π/4π/4tan2xsec4xdx

6.4: Trigonometric Substitution

Terms and Concepts

1. Trigonometric Substitution works on the same principles as Integration by Substitution, though it can feel "_____".

2. If one uses Trigonometric Substitution on an integrand containing 25x2, then one should set x = ______.

3. Consider the Pythagorean Identity sin2θ+cos2θ=1.
(a) What identity is obtained when both sides are divided by cos2θ?
(b) Use the new identity to simplify 9tan2θ+9.

4. Why does Key Idea 13(a) state that a2x2=acosθ, and not |acosθ|?

Problems

In Exercises 5-16, apply Trigonometric Substitution to evaluate the indefinite integrals.

5. \int \sqrt{x^2+1}\,dx

6. \int \sqrt{x^2+4}\,dx

7. \int \sqrt{1-x^2}\,dx

8. \int \sqrt{9-x^2}\,dx

9. \int \sqrt{x^2-1}\,dx

10. \int \sqrt{x^2-16}\,dx

11. \int \sqrt{4x^2+1}\,dx

12. \int \sqrt{1-9x^2}\,dx

13. \int \sqrt{16x^2-1}\,dx

14. \int \frac{3}{\sqrt{x^2+2}}\,dx

15. \int \frac{3}{\sqrt{7-x^2}}\,dx

16. \int \frac{5}{\sqrt{x^2-8}}\,dx

In Exercises 17-26, evaluate the indefinite integrals. Some may be evaluated without Trigonometric Substitution.

17. \int \frac{\sqrt{x^2-11}}{x}\,dx

18. \int \frac{1}{(x^2+1)^2}\,dx

19. \int \frac{x}{\sqrt{x^2-3}}\,dx

20. \int x^2 \sqrt{1-x^2}\,dx

21. \int \frac{x}{(x^2+0)^{3/2}}\,dx

22. \int \frac{5x^2}{\sqrt{x^2-10}}\,dx

23. \int \frac{1}{(x^2+4x+13)^2}\,dx

24. \int x^2(1-x^2)^{-3/2}\,dx

25. \int \frac{\sqrt{5-x^2}}{7x^2}\,dx

26. \int \frac{x^2}{\sqrt{x^2+3}}\,dx

In Exercises 27-32, evaluate the definite integrals by making the proper trigonometric substitution and changing the bounds of integration. (Note: each of the corresponding indefinite integrals has appeared previously in the Exercise set.)

27. \int_{-1}^{1}\sqrt{1-x^2} \,dx

28. \int_{4}^{8}\sqrt{x^2-16} \,dx

29. \int_{0}^{2}\sqrt{x^2+4} \,dx

30. \int_{-1}^{1} \frac{1}{(x^2+1)^2} \,dx

31. \int_{-1}^{1} \sqrt{9x^2} \,dx

32. \int_{-1}^{1}x^2\sqrt{1-x^2} \,dx

6.5 Partial Fraction Decomposition

Terms and Concepts

1. Fill in the blank: Partial Fraction Decomposition is a method of rewriting _____ functions.

2. T/F: It is sometimes necessary to use polynomial division before using Partial Fraction Decomposition.

3. Decompose \frac{1}{x^2-3x} without solving for the coefficients, as done in Example 181.

4. Decompose \frac{7-x}{x^2-9} without solving for the coefficients, as done in Example 181.

5. Decompose \frac{x-3}{x^2-7} without solving for the coefficients, as done in Example 181.

6. Decompose \frac{2x+5}{x^3+7x} without solving for the coefficients, as done in Example 181.

Problems

In Exercises 7-25, evaluate the indefinite integral.

7. \int \frac{7x+7}{x^2+3x-10}\,dx

8. \int \frac{7x-2}{x^2+x}\,dx

9. \int \frac{-4}{3x^2-12}\,dx

10. \int \frac{x+7}{(x+5)^2}\,dx

11. \int \frac{-3x-20}{(x+8)^2}\,dx

12. \int \frac{9x^2+11x+7}{x(x+1)^2}\,dx

13. \int \frac{-12x^2-x+33}{(x-1)(x+3)(3-2x)}\,dx

14. \int \frac{94x^2-10x}{(7x+3)(5x-1)(3x-1)}\,dx

15. \int \frac{x^2+2+1}{x^2+x-2}\,dx

16. \int \frac{x^3}{x^2-2x-20}\,dx

17. \int \frac{2x^2-4x+6}{x^2-2x+3}\,dx

18. \int \frac{1}{x^2+3x^2+3x}\,dx

19. \int \frac{x^2+x+5}{x^2+4x+10}\,dx

20. \int \frac{12x^2+21x+3}{(x+1)(3x^2+5x-1)}\,dx

21. \int \frac{6x^2+8x-4}{(x-3)(x^2+6x+10)}\,dx

22. \int \frac{2x^2+x+1}{(x+1)(x^2+9)}\,dx

23. \int \frac{x^2-20x-69}{(x-7)(x^2+2x+17)}\,dx

24. \int \frac{9x^2-60x+33}{(x-9)(x^2-2x+11)}\,dx

25. \int \frac{6x^2+45x+121}{(x+2)(x^2+10x+27)}\,dx

In Exercises 26-29, evaluate the definite integral.

26. \int_{1}^{2} \frac{8x+21}{(x+2)(x+3)} \,dx

27. \int_{0}^{5} \frac{14x+6}{(3x+2)(x+4)} \,dx

28. \int_{-1}^{1} \frac{x^2+5x-5}{(x-10)(x^2+4x+5)} \,dx

29. \int_{0}^{1} \frac{x}{(x+1)(x^2+2x+1)} \,dx

6.6: Hyperbolic Functions

Terms and Concepts

1. In Key Idea 16, the equation \int \tanh x\,dx = \ln (\cosh x)+C is given. Why is "\ln |\cosh x|" not used -i.e., why are absolute values no necessary?

2. The hyperbolic functions are used to define points on the right hand portion of the hyperbola x^2-y^2=1, as shown in Figure 6.13. How can we use the hyperbolic functions to define points on the left hand portion of the hyperbola?

Problems

In Exercises 3-10, verify the given identity using Definition 23, as done in Example 186.

3. \coth^2 x-\text{csch }^2 x=1

4. \cosh 2x = \cosh^2 x+\sinh^2 x

5. \cosh^2 x = \frac{\cosh 2x+1}{2}

6. \sinh^2 x = \frac{\cosh 2x-1}{2}

7. \frac{d}{dx} [\text{sech } x] = -\text{sech } x \tanh x

8. \frac{d}{dx} [\coth x] = -\text{sech } x \tanh x

9. \int \tanh x\,dx = \ln (\cosh x)+C

10. \int \coth x\,dx = \ln |\sinh x|+C

In Exercises 11-21, find the derivative of the given function.

11. f(x) = \cosh 2x

12. f(x) = \tanh (x^2)

13. f(x) = \ln (\sinh x)

14. f(x) = \sinh x\cosh x

15. f(x) = x\sinh x -\cosh x

16. f(x) = \text{sech }^{-1}(x^2)

17. f(x) = \sinh^{-1}(3x)

18. f(x) = \cosh^{-1}(2x^2)

19. f(x) = \tanh^{-1}(x+5)

20. f(x) = \tanh^{-1} (\cos x)

21. f(x) = \cosh^{-1} (\sec x)

In Exercises 22-26, find the equation of the line tangent to the function at the given x-value.

22. f(x) = \sinh x\text{ at }x=0

23. f(x) = \cosh x\text{ at }x=\ln 2

24. f(x) = \text{sech }^2 x\text{ at }x=\ln3

25. f(x) = \sinh^{-1} x\text{ at }x=0

26. f(x) = \cosh^{-1} x\text{ at }x=\sqrt{2}

In Exercises 27-40, evaluate the given indefinite integral.

27. \int \tanh (2x)\,dx

28. \int \cosh (3x-7) \,dx

29. \int \sinh x \cosh x\,dx

30. \int x\cosh x \,dx

31. \int x\sinh x\,dx

32. \int \frac{1}{9-x^2}\,dx

33. \int \frac{2x}{\sqrt{x^4-4}}\,dx

34. \int \frac{\sqrt{x}}{\sqrt{1+x^3}}\,dx

35. \int \frac{1}{x^2-16}\,dx

36. \int \frac{1}{x^2+x}\,dx

37. \int \frac{e^x}{x^{2x}+1}\,dx

38. \int \sinh^{-1} x\,dx

39. \int \tanh^{-1}x\,dx

40. \int \text{sech } x\,dx (Hint: multiply by \frac{\cosh x}{\cosh x}; set u=\sinh x.)

In Exercises 41-43, evaluate the given definite integral.

41. \int_{-1}^{1}\sinh x\,dx

42. \int_{-\ln 2}^{\ln 2}\cosh x\,dx

43. \int_{0}^1 \tanh^{-1}x\,dx.

6.7: L'Hopital's Rule

Terms and Concepts

1. List the different indeterminate forms described in this section.

2. T/F: l'Hopital's Rule provides a faster method of computing derivatives.

3. T/F: l'Hopitals Rule states that \frac{d}{dx} \left ( \frac{f(x)}{g(x)}\right ) = \frac{f'(x)}{g'(x)}.

4. Explain what the indeterminate form "1^{\infty}" means.

5. Fill in the blanks" The Quotient Rule is applied to \frac{f(x)}{g(x)} when taking _____; l'Hopital's Rule is applied when taking certain_______.

6. Create (but do not evaluate) a limit that returns "\infty^0".

7. Create a function f(x) such that \lim\limits_{x\to1}f(x) returns "0^0".

Problems

In Exercises 8-52, evaluate the given limit.

8. \lim\limits_{x\to 1}\frac{x^2+x-2}{x-1}

9. \lim\limits_{x\to 2}\frac{x^2+x-6}{x^2-7x+10}

10. \lim\limits_{x\to \pi} \frac{\sin x}{x-\pi}

11. \lim\limits_{x\to\pi/4}\frac{\sin x-\cos x}{\cos (2x)}

12. \lim\limits_{x\to 0}\frac{\sin (5x)}{x}

13. \lim\limits_{x\to 0} \frac{\sin (2x)}{x+2}

14. \lim\limits_{x\to 0} \frac{\sin (2x)}{\sin (3x)}

15. \lim\limits_{x\to 0} \frac{\sin (ax)}{\sin (bx)}

16. \lim\limits_{x\to 0^+}\frac{e^x-1}{x^2}

17. \lim\limits_{x\to 0^+}\frac{e^x-x-1}{x^2}

18. \lim\limits_{x\to 0^+} \frac{x-\sin x}{x^3-x^2}

19. \lim\limits_{x\to \infty} \frac{x^4}{e^x}

20. \lim\limits_{x\to \infty} \frac{\sqrt{x}}{e^x}

21. \lim\limits_{x\to \infty} \frac{e^x}{\sqrt{x}}

22. \lim\limits_{x\to \infty} \frac{e^x}{2^x}

23. \lim\limits_{x\to \infty}\frac{e^x}{3^x}

24. \lim\limits_{x\to 3} \frac{x^3-5x^2+3x+9}{x^3-7x^2+15x-9}

25. \lim\limits_{x\to -2}\frac{x^3+4x^2+4x}{x^3+7x^2+16x+12}

26. \lim\limits_{x\to \infty} \frac{\ln x}{x}

27. \lim\limits_{x\to \infty} \frac{\ln (x^2)}{x}

28. \lim\limits_{x\to \infty} \frac{\left ( \ln x\right )^2}{x}

29. \lim\limits_{x\to 0^+}x\cdot \ln x

30. \lim\limits_{x\to 0^+}\sqrt{x}\cdot \ln x

31. \lim\limits_{x\to 0^+} xe^{1/x}

32. \lim\limits_{x\to \infty} x^3-x^2

33. \lim\limits_{x\to\infty} \sqrt{x}-\ln x

34. \lim\limits_{x\to -\infty} xe^x

35. \lim\limits_{x\to 0^+}\frac{1}{x^2}e^{-1/x}

36. \lim\limits_{x\to 0^+} (1+x)^{1/x}

37. \lim\limits_{x\to 0+} (2x)^x

38. \lim\limits_{x\to 0^+} (2/x)^x

39. \lim\limits_{x\to 0^+} (\sin x)^x Hint: use the Squeeze Theorem.

40. \lim\limits_{x\to 1^+} (1-x)^{1-x}

41. \lim\limits_{x\to \infty} (x)^{1/x}

42. \lim\limits_{x\to \infty} (1/x)^x

43. \lim\limits_{x\to 1^1} (\ln x)^{1-x}

44. \lim\limits_{x\to \infty} (1+x)^{1/x}

45. \lim\limits_{x\to \infty}(1+x^2)^{1/x}

46. \lim\limits_{x\to \pi/2} \tan x \cos x

47. \lim\limits_{x\to \pi /2} \tan x \sin (2x)

48. \lim\limits_{x\to 1^+} \frac{1}{\ln x}-\frac{1}{1-x}

49. \lim\limits_{x\to 3^+} \frac{5}{x^2-9}-\frac{x}{x-3}

50. \lim\limits_{x\to \infty}x\tan (1/x)

51. \lim\limits_{x\to \infty} \frac{(\ln x)^3}{x}

52. \lim\limits_{x\to 1}\frac{x^2+x-2}{\ln x}

6.8: Improper Integration

Terms and Concepts

1. The definite integral was defined with what two stipulations?

2. If \lim\limits_{b\to \infty}\int_0^b f(x)\,dx exists, then the integral \int_0^{\infty}f(x)\,dx is said to __________.

3. If \int_1^{\infty} f(x)\,dx=10,\text{ and }0\le g(x)\le f(x) for all x, then we know that \int_1^{\infty}g(x)\,dx ______.

4. For what values of p will \int_1^{\infty} \frac{1}{x^p}\,dx converge?

5. For what values of p will \int_{10}^{\infty} \frac{1}{x^p}\,dx converge?

6. For what values of p will \int_{0}^{1} \frac{1}{x^p}\,dx converge?

Problems

In Exercises 7-33, evaluate the given improper integral.

7. \int_0^{\infty}e^{5-2x}\,dx

8. \int_{1}^{\infty} \frac{1}{x^3} \,dx

9. \int_{1}^{\infty}x^{-4} \,dx

10. \int_{-\infty}^{\infty}\frac{1}{x^2+9} \,dx

11. \int_{-\infty}^{0}2^x \,dx

12. \int_{-\infty}^{0}\left ( \frac{1}{2}\right )^x \,dx

13. \int_{-\infty}^{\infty} \frac{x}{x^2+1} \,dx

14. \int_{-\infty}^{\infty} \frac{x}{x^2+4} \,dx

15. \int_{2}^{\infty} \frac{1}{(x-1)^2} \,dx

16. \int_{1}^{2} \frac{1}{(x-1)^2} \,dx

17. \int_{2}^{\infty} \frac{1}{x-1} \,dx

18. \int_{1}^{2}\frac{1}{x-1} \,dx

19. \int_{-1}^{1}\frac{1}{x} \,dx

20. \int_{1}^{3}\frac{1}{x-2} \,dx

21. \int_{0}^{\pi} \sec^2 x \,dx

22. \int_{-2}^{1} \frac{1}{\sqrt{|x|}} \,dx

23. \int_{0}^{\infty}xe^{-x} \,dx

24. \int_{0}^{\infty}xe^{-x^2} \,dx

25. \int_{-\infty}^{\infty}xe^{-x^2} \,dx

26. \int_{-\infty}^{\infty} \frac{1}{e^x+e^{-x}} \,dx

27. \int_{0}^{1}x\ln x \,dx

28. \int_{1}^{\infty} \frac{\ln x}{x} \,dx

29. \int_{0}^{1}\ln x \,dx

30. \int_{1}^{\infty} \frac{\ln x}{x^2} \,dx

31. \int_{1}^{\infty}\frac{\ln x}{\sqrt{x}} \,dx

32. \int_{0}^{\infty}e^{-x}\sin x \,dx

33. \int_{0}^{\infty} e^{-x}\cos x \,dx

In Exercises 34-43, use the Direct Comparison Test or the Limit Comparison Test to determine whether the given definite integral converges or diverges. Clearly state what test is being used and what function the integrand is being compared to.

34. \int_{10}^{\infty}\frac{3}{\sqrt{3x^2+2x-5}} \,dx

35. \int_{2}^{\infty} \frac{4}{\sqrt{7x^3-x}} \,dx

36. \int_{0}^{\infty} \frac{\sqrt{x+3}}{\sqrt{x^3-x^2+x+1}} \,dx

37. \int_{1}^{\infty} e^{-x}\ln x \,dx

38. \int_{5}^{\infty} e^{-x^2+3x-1} \,dx

39. \int_{0}^{\infty} \frac{\sqrt{x}}{e^x} \,dx

40. \int_{2}^{\infty} \frac{1}{x^2+\sin x} \,dx

41. \int_{0}^{\infty}\frac{x}{x^2+\cos x} \,dx

42. \int_{0}^{\infty}\frac{1}{x+e^x} \,dx

43. \int_{0}^{\infty} \frac{1}{e^x-x} \,dx


6.E: Applications of Antidifferentiation (Exercises) is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by LibreTexts.

  • Was this article helpful?

Support Center

How can we help?