# 1.3: Distance Between Two Points; Circles

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

Given two points $$(x_1,y_1)$$ and $$(x_2,y_2)$$, recall that their horizontal distance from one another is $$\Delta x=x_2-x_1$$ and their vertical distance from one another is $$\Delta y=y_2-y_1$$. (Actually, the word "distance'' normally denotes "positive distance''. $$\Delta x$$ and $$\Delta y$$ are signed distances, but this is clear from context.) The actual (positive) distance from one point to the other is the length of the hypotenuse of a right triangle with legs $$|\Delta x|$$ and $$|\Delta y|$$, as shown in Figure $$\PageIndex{1}$$. The Pythagorean theorem then says that the distance between the two points is the square root of the sum of the squares of the horizontal and vertical sides:

$\hbox{distance} =\sqrt{(\Delta x)^2+(\Delta y)^2}=\sqrt{(x_2-x_1)^2+ (y_2-y_1)^2}.$

For example, the distance between points $$A(2,1)$$ and $$B(3,3)$$ is

$\sqrt{(3-2)^2+(3-1)^2}=\sqrt{5}.$

## Contributors

• Integrated by Justin Marshall.

This page titled 1.3: Distance Between Two Points; Circles is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by David Guichard.