# 1.2: Lines

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

If we have two points $$A(x_1,y_1)$$ and $$B(x_2,y_2)$$, then we can draw one and only one line through both points. By the slope of this line we mean the ratio of $$\Delta y$$ to $$\Delta x$$. The slope is often denoted $$m$$: $$m=\Delta y/\Delta x=(y_2-y_1)/(x_2-x_1)$$. For example, the line joining the points $$(1,-2)$$ and $$(3,5)$$ has slope $$(5+2)/(3-1)=7/2$$.

Figure 1.1.1. Tax vs. income.

The most familiar form of the equation of a straight line is: $$y=mx+b$$. Here $$m$$ is the slope of the line: if you increase $$x$$ by 1, the equation tells you that you have to increase $$y$$ by $$m$$. If you increase $$x$$ by $$\Delta x$$, then $$y$$ increases by $$\Delta y=m\Delta x$$. The number $$b$$ is called the y-intercept, because it is where the line crosses the $$y$$-axis. If you know two points on a line, the formula $$m=(y_2-y_1)/ (x_2-x_1)$$ gives you the slope. Once you know a point and the slope, then the $$y$$-intercept can be found by substituting the coordinates of either point in the equation: $$y_1=mx_1+b$$, i.e., $$b=y_1-mx_1$$. Alternatively, one can use the "point-slope'' form of the equation of a straight line: start with $$(y-y_1)/(x-x_1)=m$$ and then multiply to get $$(y-y_1)=m(x-x_1)$$, the point-slope form. Of course, this may be further manipulated to get $$y=mx-mx_1+y_1$$, which is essentially the "$$mx+b$$'' form.

This page titled 1.2: Lines is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by David Guichard.