Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Mathematics LibreTexts

10.3E: Exercises for Section 10.3

  • Gilbert Strang & Edwin “Jed” Herman
  • OpenStax

( \newcommand{\kernel}{\mathrm{null}\,}\)

Taylor Polynomials

In exercises 1 - 8, find the Taylor polynomials of degree two approximating the given function centered at the given point.

1) f(x)=1+x+x2 at a=1

2) f(x)=1+x+x2 at a=1

Answer
f(1)=1;f(1)=1;f(1)=2;p2(x)=1(x+1)+(x+1)2

3) f(x)=cos(2x) at a=π

4) f(x)=\sin(2x) at a=\frac{π}{2}

Answer
f′(x)=2\cos(2x);\;f''(x)=−4\sin(2x);\quad p_2(x)=−2(x−\frac{π}{2})

5) f(x)=\sqrt{x} at a=4

6) f(x)=\ln x at a=1

Answer
f′(x)=\dfrac{1}{x};\; f''(x)=−\dfrac{1}{x^2};\quad p_2(x)=0+(x−1)−\frac{1}{2}(x−1)^2

7) f(x)=\dfrac{1}{x} at a=1

8) f(x)=e^x at a=1

Answer
p_2(x)=e+e(x−1)+\dfrac{e}{2}(x−1)^2

Taylor Remainder Theorem

In exercises 9 - 14, verify that the given choice of n in the remainder estimate |R_n|≤\dfrac{M}{(n+1)!}(x−a)^{n+1}, where M is the maximum value of ∣f^{(n+1)}(z)∣ on the interval between a and the indicated point, yields |R_n|≤\frac{1}{1000}. Find the value of the Taylor polynomial p_n of f at the indicated point.

9) [T] \sqrt{10};\; a=9,\; n=3

10) [T] (28)^{1/3};\; a=27,\; n=1

Answer
\dfrac{d^2}{dx^2}x^{1/3}=−\dfrac{2}{9x^{5/3}}≥−0.00092… when x≥28 so the remainder estimate applies to the linear approximation x^{1/3}≈p_1(27)=3+\dfrac{x−27}{27}, which gives (28)^{1/3}≈3+\frac{1}{27}=3.\bar{037}, while (28)^{1/3}≈3.03658.

11) [T] \sin(6);\; a=2π,\; n=5

12) [T] e^2; \; a=0,\; n=9

Answer
Using the estimate \dfrac{2^{10}}{10!}<0.000283 we can use the Taylor expansion of order 9 to estimate e^x at x=2. as e^2≈p_9(2)=1+2+\frac{2^2}{2}+\frac{2^3}{6}+⋯+\frac{2^9}{9!}=7.3887… whereas e^2≈7.3891.

13) [T] \cos(\frac{π}{5});\; a=0,\; n=4

14) [T] \ln(2);\; a=1,\; n=1000

Answer
Since \dfrac{d^n}{dx^n}(\ln x)=(−1)^{n−1}\dfrac{(n−1)!}{x^n},R_{1000}≈\frac{1}{1001}. One has \displaystyle p_{1000}(1)=\sum_{n=1}^{1000}\dfrac{(−1)^{n−1}}{n}≈0.6936 whereas \ln(2)≈0.6931⋯.

Approximating Definite Integrals Using Taylor Series

15) Integrate the approximation \sin t≈t−\dfrac{t^3}{6}+\dfrac{t^5}{120}−\dfrac{t^7}{5040} evaluated at πt to approximate \displaystyle ∫^1_0\frac{\sin πt}{πt}\,dt.

16) Integrate the approximation e^x≈1+x+\dfrac{x^2}{2}+⋯+\dfrac{x^6}{720} evaluated at −x^2 to approximate \displaystyle ∫^1_0e^{−x^2}\,dx.

Answer
\displaystyle ∫^1_0\left(1−x^2+\frac{x^4}{2}−\frac{x^6}{6}+\frac{x^8}{24}−\frac{x^{10}}{120}+\frac{x^{12}}{720}\right)\,dx =1−\frac{1^3}{3}+\frac{1^5}{10}−\frac{1^7}{42}+\frac{1^9}{9⋅24}−\frac{1^{11}}{120⋅11}+\frac{1^{13}}{720⋅13}≈0.74683 whereas \displaystyle ∫^1_0e^{−x^2}dx≈0.74682.

More Taylor Remainder Theorem Problems

In exercises 17 - 20, find the smallest value of n such that the remainder estimate |R_n|≤\dfrac{M}{(n+1)!}(x−a)^{n+1}, where M is the maximum value of ∣f^{(n+1)}(z)∣ on the interval between a and the indicated point, yields |R_n|≤\frac{1}{1000} on the indicated interval.

17) f(x)=\sin x on [−π,π],\; a=0

18) f(x)=\cos x on [−\frac{π}{2},\frac{π}{2}],\; a=0

Answer
Since f^{(n+1)}(z) is \sin z or \cos z, we have M=1. Since |x−0|≤\frac{π}{2}, we seek the smallest n such that \dfrac{π^{n+1}}{2^{n+1}(n+1)!}≤0.001. The smallest such value is n=7. The remainder estimate is R_7≤0.00092.

19) f(x)=e^{−2x} on [−1,1],a=0

20) f(x)=e^{−x} on [−3,3],a=0

Answer
Since f^{(n+1)}(z)=±e^{−z} one has M=e^3. Since |x−0|≤3, one seeks the smallest n such that \dfrac{3^{n+1}e^3}{(n+1)!}≤0.001. The smallest such value is n=14. The remainder estimate is R_{14}≤0.000220.

In exercises 21 - 24, the maximum of the right-hand side of the remainder estimate |R_1|≤\dfrac{max|f''(z)|}{2}R^2 on [a−R,a+R] occurs at a or a±R. Estimate the maximum value of R such that \dfrac{max|f''(z)|}{2}R^2≤0.1 on [a−R,a+R] by plotting this maximum as a function of R.

21) [T] e^x approximated by 1+x,\; a=0

22) [T] \sin x approximated by x,\; a=0

Answer

Since \sin x is increasing for small x and since \frac{d^2}{dx^2}\left(\sin x\right)=−\sin x, the estimate applies whenever R^2\sin(R)≤0.2, which applies up to R=0.596.

CNX_Calc_Figure_10_03_202.jpeg

23) [T] \ln x approximated by x−1,\; a=1

24) [T] \cos x approximated by 1,\; a=0

Answer

Since the second derivative of \cos x is −\cos x and since \cos x is decreasing away from x=0, the estimate applies when R^2\cos R≤0.2 or R≤0.447.

CNX_Calc_Figure_10_03_204.jpeg

Taylor Series

In exercises 25 - 35, find the Taylor series of the given function centered at the indicated point.

25) f(x) = x^4 at a=−1

26) f(x) = 1+x+x^2+x^3 at a=−1

Answer
(x+1)^3−2(x+1)^2+2(x+1)

27) f(x) = \sin x at a=π

28) f(x) = \cos x at a=2π

Answer
Values of derivatives are the same as for x=0 so \displaystyle \cos x=\sum_{n=0}^∞(−1)^n\frac{(x−2π)^{2n}}{(2n)!}

29) f(x) = \sin x at x=\frac{π}{2}

30) f(x) = \cos x at x=\frac{π}{2}

Answer
\cos(\frac{π}{2})=0,\;−\sin(\frac{π}{2})=−1 so \displaystyle \cos x=\sum_{n=0}^∞(−1)^{n+1}\frac{(x−\frac{π}{2})^{2n+1}}{(2n+1)!}, which is also −\cos(x−\frac{π}{2}).

31) f(x) = e^x at a=−1

32) f(x) = e^x at a=1

Answer
The derivatives are f^{(n)}(1)=e, so \displaystyle e^x=e\sum_{n=0}^∞\frac{(x−1)^n}{n!}.

33) f(x) = \dfrac{1}{(x−1)^2} at a=0 (Hint: Differentiate the Taylor Series for \dfrac{1}{1−x}.)

34) f(x) = \dfrac{1}{(x−1)^3} at a=0

Answer
\displaystyle \frac{1}{(x−1)^3}=−\frac{1}{2}\frac{d^2}{dx^2}\left(\frac{1}{1−x}\right)=−\sum_{n=0}^∞\left(\frac{(n+2)(n+1)x^n}{2}\right)

35) \displaystyle F(x)=∫^x_0\cos(\sqrt{t})\,dt;\quad \text{where}\; f(t)=\sum_{n=0}^∞(−1)^n\frac{t^n}{(2n)!} at a=0 (Note: f is the Taylor series of \cos(\sqrt{t}).)

In exercises 36 - 44, compute the Taylor series of each function around x=1.

36) f(x)=2−x

Answer
2−x=1−(x−1)

37) f(x)=x^3

38) f(x)=(x−2)^2

Answer
((x−1)−1)^2=(x−1)^2−2(x−1)+1

39) f(x)=\ln x

40) f(x)=\dfrac{1}{x}

Answer
\displaystyle \frac{1}{1−(1−x)}=\sum_{n=0}^∞(−1)^n(x−1)^n

41) f(x)=\dfrac{1}{2x−x^2}

42) f(x)=\dfrac{x}{4x−2x^2−1}

Answer
\displaystyle x\sum_{n=0}^∞2^n(1−x)^{2n}=\sum_{n=0}^∞2^n(x−1)^{2n+1}+\sum_{n=0}^∞2^n(x−1)^{2n}

43) f(x)=e^{−x}

44) f(x)=e^{2x}

Answer
\displaystyle e^{2x}=e^{2(x−1)+2}=e^2\sum_{n=0}^∞\frac{2^n(x−1)^n}{n!}

Maclaurin Series

[T] In exercises 45 - 48, identify the value of x such that the given series \displaystyle \sum_{n=0}^∞a_n is the value of the Maclaurin series of f(x) at x. Approximate the value of f(x) using \displaystyle S_{10}=\sum_{n=0}^{10}a_n.

45) \displaystyle \sum_{n=0}^∞\frac{1}{n!}

46) \displaystyle \sum_{n=0}^∞\frac{2^n}{n!}

Answer
x=e^2;\quad S_{10}=\dfrac{34,913}{4725}≈7.3889947

47) \displaystyle \sum_{n=0}^∞\frac{(−1)^n(2π)^{2n}}{(2n)!}

48) \displaystyle \sum_{n=0}^∞\frac{(−1)^n(2π)^{2n+1}}{(2n+1)!}

Answer
\sin(2π)=0;\quad S_{10}=8.27×10^{−5}

In exercises 49 - 52 use the functions S_5(x)=x−\dfrac{x^3}{6}+\dfrac{x^5}{120} and C_4(x)=1−\dfrac{x^2}{2}+\dfrac{x^4}{24} on [−π,π].

49) [T] Plot \sin^2x−(S_5(x))^2 on [−π,π]. Compare the maximum difference with the square of the Taylor remainder estimate for \sin x.

50) [T] Plot \cos^2x−(C_4(x))^2 on [−π,π]. Compare the maximum difference with the square of the Taylor remainder estimate for \cos x.

Answer

The difference is small on the interior of the interval but approaches 1 near the endpoints. The remainder estimate is |R_4|=\frac{π^5}{120}≈2.552.

CNX_Calc_Figure_10_03_206.jpeg

51) [T] Plot |2S_5(x)C_4(x)−\sin(2x)| on [−π,π].

52) [T] Compare \dfrac{S_5(x)}{C_4(x)} on [−1,1] to \tan x. Compare this with the Taylor remainder estimate for the approximation of \tan x by x+\dfrac{x^3}{3}+\dfrac{2x^5}{15}.

Answer

The difference is on the order of 10^{−4} on [−1,1] while the Taylor approximation error is around 0.1 near ±1. The top curve is a plot of \tan^2x−\left(\dfrac{S_5(x)}{C_4(x)}\right)^2 and the lower dashed plot shows t^2−\left(\dfrac{S_5}{C_4}\right)^2.

CNX_Calc_Figure_10_03_208.jpeg

53) [T] Plot e^x−e_4(x) where e_4(x)=1+x+\dfrac{x^2}{2}+\dfrac{x^3}{6}+\dfrac{x^4}{24} on [0,2]. Compare the maximum error with the Taylor remainder estimate.

54) (Taylor approximations and root finding.) Recall that Newton’s method x_{n+1}=x_n−\dfrac{f(x_n)}{f'(x_n)} approximates solutions of f(x)=0 near the input x_0.

a. If f and g are inverse functions, explain why a solution of g(x)=a is the value f(a) of f.

b. Let p_N(x) be the N^{\text{th}} degree Maclaurin polynomial of e^x. Use Newton’s method to approximate solutions of p_N(x)−2=0 for N=4,5,6.

c. Explain why the approximate roots of p_N(x)−2=0 are approximate values of \ln(2).

Answer
a. Answers will vary.
b. The following are the x_n values after 10 iterations of Newton’s method to approximation a root of p_N(x)−2=0: for N=4,x=0.6939...; for N=5,x=0.6932...; for N=6,x=0.69315...;. (Note: \ln(2)=0.69314...)
c. Answers will vary.

Evaluating Limits using Taylor Series

In exercises 55 - 58, use the fact that if \displaystyle q(x)=\sum_{n=1}^∞a_n(x−c)^n converges in an interval containing c, then \displaystyle \lim_{x→c}q(x)=a_0 to evaluate each limit using Taylor series.

55) \displaystyle \lim_{x→0}\frac{\cos x−1}{x^2}

56) \displaystyle \lim_{x→0}\frac{\ln(1−x^2)}{x^2}

Answer
\dfrac{\ln(1−x^2)}{x^2}→−1

57) \displaystyle \lim_{x→0}\frac{e^{x^2}−x^2−1}{x^4}

58) \displaystyle \lim_{x→0^+}\frac{\cos(\sqrt{x})−1}{2x}

Answer
\displaystyle \frac{\cos(\sqrt{x})−1}{2x}≈\frac{(1−\frac{x}{2}+\frac{x^2}{4!}−⋯)−1}{2x}→−\frac{1}{4}

This page titled 10.3E: Exercises for Section 10.3 is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Gilbert Strang & Edwin “Jed” Herman (OpenStax) via source content that was edited to the style and standards of the LibreTexts platform.

Support Center

How can we help?