3.E: Multiple Integrals (Exercises)
- Page ID
- 3083
3.1: Double Integrals
A
For Exercises 1-4, find the volume under the surface \(z = f (x, y)\) over the rectangle \(R\).
3.1.1. \(f (x, y) = 4x y,\, R = [0,1]×[0,1] \)
3.1.2. \(f (x, y) = e^{ x+y} ,\, R = [0,1]×[−1,1] \)
3.1.3. \(f (x, y) = x^ 3 + y^ 2 ,\, R = [0,1]×[0,1] \)
3.1.4. \(f (x, y) = x^ 4 + x y+ y^ 3 ,\, R = [1,2]×[0,2]\)
For Exercises 5-12, evaluate the given double integral.
3.1.5. \(\int_0^1 \int_1^2 (1− y)x^ 2 \,dx \,d y\)
3.1.6. \(\int_0^1 \int_0^2 x(x+ y)\,dx \,d y\)
3.1.7. \(\int_0^2 \int_0^1 (x+2)\,dx \,d y\)
3.1.8. \(\int_{−1}^2 \int_{−1}^1 x(x y+\sin x)\,dx\, d y\)
3.1.9. \(\int_0^{\pi /2} \int_0^1 x y\cos (x^ 2 y)\,dx\, d y\)
3.1.10. \(\int_0^{\pi} \int_0^{π/2} \sin x \cos (y−π) \,dx\, d y\)
3.1.11. \(\int_0^2 \int_1^4 x y \,dx\, d y\)
3.1.12. \(\int_{-1}^1 \int_{-1}^2 1\,dx\, d y\)
3.1.13. Let \(M\) be a constant. Show that \(\int_c^d \int_a^b M\, dx \,d y = M(d − c)(b − a).\)
3.2: Double Integrals Over a General Region
A
For Exercises 1-6, evaluate the given double integral.
3.2.1. \(\int_0^1 \int_{\sqrt{ x}}^1 24x^ 2 y \,d y\, dx\)
3.2.2. \(\int_0^π \int_0^y \sin x \,dx\, d y\)
3.2.3. \(\int_1^2 \int_0^{\ln x} 4x \,d y\, dx\)
3.2.4. \(\int_0^2 \int_0^{2y} e^ {y^ 2} \,dx \,d y\)
3.2.5. \(\int_0^{π/2} \int_0^y \cos x \sin y \,dx \,d y\)
3.2.6. \(\int_0^{∞} \int_0^{∞} x ye^{−(x^ 2+y^ 2 )}\, dx \,d y\)
3.2.7. \(\int_0^2 \int_0^y 1\,dx \,d y\)
3.2.8. \(\int_0^1 \int_0^{x^ 2} 2\,d y\, dx\)
3.2.9. Find the volume \(V\) of the solid bounded by the three coordinate planes and the plane \(x+ y+ z = 1\).
3.2.10. Find the volume \(V\) of the solid bounded by the three coordinate planes and the plane \(3x+2y+5z = 6\).
B
3.2.11. Explain why the double integral \(\iint\limits_R 1\,d A\) gives the area of the region \(R\). For simplicity, you can assume that \(R\) is a region of the type shown in Figure 3.2.1(a).
C
3.2.12. Prove that the volume of a tetrahedron with mutually perpendicular adjacent sides of lengths \(a,\, b, \text{ and }c\), as in Figure 3.2.6, is \(\frac{abc}{ 6}\). (Hint: Mimic Example 3.5, and recall from Section 1.5 how three noncollinear points determine a plane.)
Figure 3.2.6
3.2.13. Show how Exercise 12 can be used to solve Exercise 10.
3.3: Triple Integrals
A
For Exercises 1-8, evaluate the given triple integral.
3.3.1. \(\int_0^3 \int_0^2 \int_0^1 x yz \,dx\, d y\, dz\)
3.3.2. \(\int_0^1 \int_0^x \int_0^y x yz \,dz\, d y\, dx\)
3.3.3. \(\int_0^π \int_0^x \int_0^{x y} x^ 2 \sin z \,dz\, d y\, dx\)
3.3.4. \(\int_0^1 \int_0^z \int_0^y ze^{ y^ 2} \,dx\, d y\, dz\)
3.3.5. \(\int_1^e \int_0^y \int_0^{1/y} x^ 2 z \,dx \,dz \,d y\)
3.3.6. \(\int_1^2 \int_0^{y^ 2} \int_0^{z^ 2} yz \,dx \,dz \,d y\)
3.3.7. \(\int_1^2 \int_2^4 \int_0^3 1\,dx \,d y\, dz\)
3.3.8. \(\int_0^1 \int_0^{1−x} \int_0^{1−x−y} 1\,dz\, d y\, dx\)
3.3.9. Let \(M\) be a constant. Show that \(\int_{z_1}^{z_2} \int_{y_1}^{y_2} \int_{x_1}^{x_2} M\, dx\, d y\, dz = M(z_2 − z_1)(y_2 − y_1)(x_2 − x_1)\).
B
3.3.10. Find the volume \(V\) of the solid \(S\) bounded by the three coordinate planes, bounded above by the plane \(x+ y+ z = 2\), and bounded below by the plane \(z = x+ y\).
C
3.3.11. Show that \(\int_a^b \int_a^z \int_a^y f (x)\,dx \,d y \,dz = \int_a^b \frac{(b−x)^ 2}{ 2} f (x)\,dx\). (Hint: Think of how changing the order of integration in the triple integral changes the limits of integration.)
3.4: Numerical Approximation of Multiple Integrals
C
3.4.1. Write a program that uses the Monte Carlo method to approximate the double integral \(\iint\limits_R e^{ x y}\, d A\), where \(R = [0,1]×[0,1]\). Show the program output for \(N = 10,\, 100,\, 1000,\, 10000,\, 100000 \text{ and }1000000\) random points.
3.4.2. Write a program that uses the Monte Carlo method to approximate the triple integral \iiint\limits_S e^{ x yz}\, dV\), where \(S = [0,1] × [0,1] × [0,1]\). Show the program output for \(N = 10,\, 100,\, 1000,\, 10000,\, 100000 \text{ and }1000000\) random points.
3.4.3. Repeat Exercise 1 with the region \(R = {(x, y) : −1 ≤ x ≤ 1,\, 0 ≤ y ≤ x^ 2 }\).
3.4.4. Repeat Exercise 2 with the solid \(S = {(x, y, z) : 0 ≤ x ≤ 1,\, 0 ≤ y ≤ 1, \,0 ≤ z ≤ 1− x− y}\).
3.4.5. Use the Monte Carlo method to approximate the volume of a sphere of radius 1.
3.4.6. Use the Monte Carlo method to approximate the volume of the ellipsoid \(\frac{x^ 2}{ 9} + \frac{y^ 2}{ 4} + \frac{z^ 2}{ 1} = 1\).
3.5: Change of Variables in Multiple Integrals
A
3.5.1. Find the volume \(V\) inside the paraboloid \(z = x^ 2 + y^ 2 \text{ for }0 ≤ z ≤ 4\).
3.5.2. Find the volume \(V\) inside the cone \(z = \sqrt{ x^ 2 + y^ 2}\) for \(0 ≤ z ≤ 3\).
B
3.5.3. Find the volume \(V\) of the solid inside both \(x^ 2 + y^ 2 + z^ 2 = 4\) and \(x^ 2 + y^ 2 = 1\).
3.5.4. Find the volume \(V\) inside both the sphere \(x^ 2 + y^ 2 + z^ 2 = 1\) and the cone \(z = \sqrt{ x^ 2 + y^ 2}\).
3.5.5. Prove Equation (3.25).
3.5.6. Prove Equation (3.26).
3.5.7. Evaluate \(\iiint\limits_R \sin \left ( \frac{x+y}{ 2} \right ) \cos \left ( \frac{x−y}{ 2} \right ) \,d A\), where \(R\) is the triangle with vertices \((0,0),\, (2,0) \text{ and }(1,1)\). (Hint: Use the change of variables \(u = (x+ y)/2,\, v = (x− y)/2.\))
3.5.8. Find the volume of the solid bounded by \(z = x^ 2 + y^ 2 \text{ and }z^ 2 = 4(x^ 2 + y^ 2 )\).
3.5.9. Find the volume inside the elliptic cylinder \(\frac{x^ 2}{ a^ 2} + \frac{y^ 2}{ b^ 2} = 1 \text{ for } 0 ≤ z ≤ 2\).
C
3.5.10. Show that the volume inside the ellipsoid \(\frac{x^ 2}{ a^ 2} + \frac{y^ 2}{ b^ 2} + \frac{z^ 2}{ c^ 2} = 1 \text{ is }\frac{4πabc}{ 3}\). (Hint: Use the change of variables \(x = au,\, y = bv,\, z = cw\), then consider Example 3.12.)
3.5.11. Show that the Beta function, defined by
\[B(x, y) = \int_0^1 t^{ x−1} (1− t)^{ y−1} dt ,\text{ for }x > 0,\, y > 0,\]
satisfies the relation \(B(y, x) = B(x, y) \text{ for }x > 0,\, y > 0.\)
3.5.12. Using the substitution \(t = u/(u +1)\), show that the Beta function can be written as
\[B(x, y) = \int_0^∞ \frac{u^{ x−1}}{ (u +1)^{x+y}}\, du ,\text{ for }x > 0,\, y > 0.\]
3.6: Application: Center of Mass
A
For Exercises 1-5, find the center of mass of the region \(R\) with the given density function \(δ(x, y)\).
3.6.1. \(R = {(x, y) : 0 ≤ x ≤ 2,\, 0 ≤ y ≤ 4 },\, δ(x, y) = 2y\)
3.6.2. \(R = {(x, y) : 0 ≤ x ≤ 1,\, 0 ≤ y ≤ x 2 },\, δ(x, y) = x+ y \)
3.6.3. \(R = {(x, y) : y ≥ 0,\, x^ 2 + y^ 2 ≤ a^ 2 },\, δ(x, y) = 1\)
3.6.4. \(R = {(x, y) : y ≥ 0,\, x ≥ 0,\, 1 ≤ x^ 2 + y^ 2 ≤ 4 },\, δ(x, y) = \sqrt{ x^ 2 + y^ 2}\)
3.6.5. \(R = {(x, y) : y ≥ 0,\, x^ 2 + y^ 2 ≤ 1 },\, δ(x, y) = y\)
B
For Exercises 6-10, find the center of mass of the solid \(S\) with the given density function \(δ(x, y, z)\).
3.6.6. \(S = {(x, y, z) : 0 ≤ x ≤ 1,\, 0 ≤ y ≤ 1,\, 0 ≤ z ≤ 1 },\, δ(x, y, z) = x yz\)
3.6.7. \(S = {(x, y, z) : z ≥ 0,\, x^ 2 + y^ 2 + z^ 2 ≤ a^ 2 },\, δ(x, y, z) = x^ 2 + y^ 2 + z^ 2\)
3.6.8. \(S = {(x, y, z) : x ≥ 0,\, y ≥ 0,\, z ≥ 0,\, x^ 2 + y^ 2 + z^ 2 ≤ a^ 2 },\, δ(x, y, z) = 1\)
3.6.9. \(S = {(x, y, z) : 0 ≤ x ≤ 1,\, 0 ≤ y ≤ 1,\, 0 ≤ z ≤ 1 },\, δ(x, y, z) = x^ 2 + y^ 2 + z^ 2\)
3.6.10. \(S = {(x, y, z) : 0 ≤ x ≤ 1,\, 0 ≤ y ≤ 1,\, 0 ≤ z ≤ 1− x− y},\, δ(x, y, z) = 1\)
3.7: Application: Probability and Expected Value
B
3.7.1. Evaluate the integral \(\int_{−\infty}^{\infty} e^{ −x^ 2}\, dx\) using anything you have learned so far.
3.7.2. For \(σ > 0 \text{ and }µ > 0\), evaluate \(\int_{\infty}^{−\infty} \frac{1}{ σ \sqrt{ 2π}} e^{ −(x−µ)^ 2 /2σ^ 2} dx\).
3.7.3. Show that \(EY = \frac{n}{ n+1}\) in Example 3.18
C
3.7.4. Write a computer program (in the language of your choice) that verifies the results in Example 3.18 for the case \(n = 3\) by taking large numbers of samples.
3.7.5. Repeat Exercise 4 for the case when \(n = 4\).
3.7.6. For continuous random variables \(X, Y \text{ with joint p.d.f. }f (x, y)\), define the second moments \(E(X^ 2 ) \text{ and }E(Y^ 2 )\) by
\[E(X^ 2 ) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^ 2 f (x, y)\,dx\, d y \text{ and }E(Y^ 2 ) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y^ 2 f (x, y)\,dx \,d y ,\]
and the variances Var\((X)\) and Var\((Y)\) by
\[\text{Var}(X) = E(X^ 2 )−(EX)^ 2 \text{ and Var}(Y) = E(Y^ 2 )−(EY)^ 2 .\]
Find Var\((X)\) and Var\((Y)\) for \(X\) and \(Y\) as in Example 3.18.
3.7.7. Continuing Exercise 6, the correlation \(ρ \text{ between }X \text{ and }Y\) is defined as
\[ρ = \frac{E(XY)−(EX)(EY)}{ \sqrt{ \text{Var}(X)\text{Var}(Y)}} ,\]
where \(E(XY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y \,f (x, y)\,dx\, d y\). Find \(ρ\) for \(X \text{ and }Y\) as in Example 3.18.
(Note: The quantity \(E(XY)−(EX)(EY)\) is called the covariance of \(X\) and \(Y\).)
3.7.8. In Example 3.17 would the answer change if the interval \((0,100)\) is used instead of \((0,1)\)? Explain.
Contributors and Attributions
Michael Corral (Schoolcraft College). The content of this page is distributed under the terms of the GNU Free Documentation License, Version 1.2.