B.3 Inverse Trigonometric Functions
- Page ID
- 89665
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)In order to construct inverse trigonometric functions we first have to restrict their domains so as to make them one-to-one (or injective). We do this as shown below
Since these functions are inverses of each other we have
\begin{align*} \arcsin(\sin \theta) &= \theta & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\\ \arccos(\cos \theta) &= \theta & 0 \leq \theta \leq \pi\\ \arctan(\tan \theta) &= \theta & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \end{align*}
and also
\begin{align*} \sin(\arcsin x) &= x & -1 \leq x \leq 1\\ \cos(\arccos x) &= x & -1 \leq x \leq 1\\ \tan(\arctan x) &= x & \text{any real $x$} \end{align*}
We can read other combinations of trig functions and their inverses, like, for example, \(\cos(\arcsin x)\text{,}\) off of triangles like
We have chosen the hypotenuse and opposite sides of the triangle to be of length 1 and \(x\text{,}\) respectively, so that \(\sin(\theta)=x\text{.}\) That is, \(\theta = \arcsin x\text{.}\) We can then read off of the triangle that
\begin{align*} \cos(\arcsin x) &= \cos(\theta) = \sqrt{1-x^2} \end{align*}
We can reach the same conclusion using trig identities, as follows.
- Write \(\arcsin x=\theta\text{.}\) We know that \(\sin(\theta)=x\) and we wish to compute \(\cos(\theta)\text{.}\) So we just need to express \(\cos(\theta)\) in terms of \(\sin(\theta)\text{.}\)
- To do this we make use of one of the Pythagorean identities
\begin{align*} \sin^2\theta + \cos^2\theta &=1\\ \cos\theta &= \pm \sqrt{1-\sin^2\theta} \end{align*}
- Thus
\begin{gather*} \cos(\arcsin x) = \cos\theta = \pm\sqrt{1-\sin^2\theta} \end{gather*}
- To determine which branch we should use we need to consider the domain and range of \(\arcsin x\text{:}\)
\begin{align*} \text{Domain: } -1 \leq x \leq 1 && \text{Range: } -\frac{\pi}{2} \leq \arcsin x \leq \frac{\pi}{2} \end{align*}
Thus we are applying cosine to an angle that always lies between \(-\frac{\pi}{2}\) and \(\frac{\pi}{2}\text{.}\) Cosine is non-negative on this range. Hence we should take the positive branch and\begin{align*} \cos(\arcsin x) &= \sqrt{1-\sin^2\theta}= \sqrt{1-\sin^2(\arcsin x)}\\ &= \sqrt{1-x^2} \end{align*}
In a very similar way we can simplify \(\tan(\arccos x)\text{.}\)
- Write \(\arccos x=\theta\text{,}\) and then
\begin{align*} \tan( \arccos x) &= \tan \theta = \frac{\sin\theta}{\cos \theta} \end{align*}
- Now the denominator is easy since \(\cos \theta = \cos \arccos x = x\text{.}\)
- The numerator is almost the same as the previous computation.
\begin{align*} \sin\theta &= \pm \sqrt{1-\cos^2\theta}\\ &= \pm \sqrt{1-x^2} \end{align*}
- To determine which branch we again consider domains and and ranges:
\begin{align*} \text{Domain: } -1 \leq x \leq 1 && \text{Range: } 0 \leq \arccos x \leq \pi \end{align*}
Thus we are applying sine to an angle that always lies between \(0\) and \(\pi\text{.}\) Sine is non-negative on this range and so we take the positive branch. - Putting everything back together gives
\begin{align*} \tan(\arccos x) &= \frac{\sqrt{1-x^2}}{x} \end{align*}
Completing the 9 possibilities gives:
\begin{align*} \sin( \arcsin x ) &= x & \sin( \arccos x ) &= \sqrt{1-x^2} & \sin( \arctan x ) &= \frac{x}{\sqrt{1+x^2}}\\ \cos( \arcsin x ) &= \sqrt{1-x^2} & \cos( \arccos x ) &= x & \cos( \arctan x ) &= \frac{1}{\sqrt{1+x^2}}\\ \tan( \arcsin x ) &= \frac{x}{\sqrt{1-x^2}} & \tan( \arccos x ) &= \frac{\sqrt{1-x^2}}{x} & \tan( \arctan x ) &= x \end{align*}