Skip to main content
Mathematics LibreTexts

B.3 Inverse Trigonometric Functions

  • Page ID
    89665
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    In order to construct inverse trigonometric functions we first have to restrict their domains so as to make them one-to-one (or injective). We do this as shown below

    \[ \sin\theta \nonumber \]

    Domain: \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\)

    Range: \(-1 \leq \sin \theta \leq 1\)

    \[ \cos \theta \nonumber \]

    Domain: \(0 \leq \theta \leq \pi\)

    Range: \(-1 \leq \cos \theta \leq 1\)

    \[ \tan \theta \nonumber \]

    Domain: \(-\frac{\pi}{2} \lt \theta \lt \frac{\pi}{2}\)

    Range: all real numbers

    \[ \arcsin x \nonumber \]

    Domain: \(-1 \leq x \leq 1\)

    Range: \(-\frac{\pi}{2} \leq \arcsin x \leq \frac{\pi}{2}\)

    \[ \arccos x \nonumber \]

    Domain: \(-1 \leq x \leq 1\)

    Range: \(0 \leq \arccos x \leq \pi\)

    \[ \arctan x \nonumber \]

    Domain: all real numbers

    Range: \(-\frac{\pi}{2} \lt \arctan x \lt \frac{\pi}{2}\)

    Since these functions are inverses of each other we have

    \begin{align*} \arcsin(\sin \theta) &= \theta & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\\ \arccos(\cos \theta) &= \theta & 0 \leq \theta \leq \pi\\ \arctan(\tan \theta) &= \theta & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \end{align*}

    and also

    \begin{align*} \sin(\arcsin x) &= x & -1 \leq x \leq 1\\ \cos(\arccos x) &= x & -1 \leq x \leq 1\\ \tan(\arctan x) &= x & \text{any real $x$} \end{align*}

    We can read other combinations of trig functions and their inverses, like, for example, \(\cos(\arcsin x)\text{,}\) off of triangles like

    We have chosen the hypotenuse and opposite sides of the triangle to be of length 1 and \(x\text{,}\) respectively, so that \(\sin(\theta)=x\text{.}\) That is, \(\theta = \arcsin x\text{.}\) We can then read off of the triangle that

    \begin{align*} \cos(\arcsin x) &= \cos(\theta) = \sqrt{1-x^2} \end{align*}

    We can reach the same conclusion using trig identities, as follows.

    • Write \(\arcsin x=\theta\text{.}\) We know that \(\sin(\theta)=x\) and we wish to compute \(\cos(\theta)\text{.}\) So we just need to express \(\cos(\theta)\) in terms of \(\sin(\theta)\text{.}\)
    • To do this we make use of one of the Pythagorean identities

      \begin{align*} \sin^2\theta + \cos^2\theta &=1\\ \cos\theta &= \pm \sqrt{1-\sin^2\theta} \end{align*}

    • Thus

      \begin{gather*} \cos(\arcsin x) = \cos\theta = \pm\sqrt{1-\sin^2\theta} \end{gather*}

    • To determine which branch we should use we need to consider the domain and range of \(\arcsin x\text{:}\)

      \begin{align*} \text{Domain: } -1 \leq x \leq 1 && \text{Range: } -\frac{\pi}{2} \leq \arcsin x \leq \frac{\pi}{2} \end{align*}

      Thus we are applying cosine to an angle that always lies between \(-\frac{\pi}{2}\) and \(\frac{\pi}{2}\text{.}\) Cosine is non-negative on this range. Hence we should take the positive branch and

      \begin{align*} \cos(\arcsin x) &= \sqrt{1-\sin^2\theta}= \sqrt{1-\sin^2(\arcsin x)}\\ &= \sqrt{1-x^2} \end{align*}

    In a very similar way we can simplify \(\tan(\arccos x)\text{.}\)

    • Write \(\arccos x=\theta\text{,}\) and then

      \begin{align*} \tan( \arccos x) &= \tan \theta = \frac{\sin\theta}{\cos \theta} \end{align*}

    • Now the denominator is easy since \(\cos \theta = \cos \arccos x = x\text{.}\)
    • The numerator is almost the same as the previous computation.

      \begin{align*} \sin\theta &= \pm \sqrt{1-\cos^2\theta}\\ &= \pm \sqrt{1-x^2} \end{align*}

    • To determine which branch we again consider domains and and ranges:

      \begin{align*} \text{Domain: } -1 \leq x \leq 1 && \text{Range: } 0 \leq \arccos x \leq \pi \end{align*}

      Thus we are applying sine to an angle that always lies between \(0\) and \(\pi\text{.}\) Sine is non-negative on this range and so we take the positive branch.
    • Putting everything back together gives

      \begin{align*} \tan(\arccos x) &= \frac{\sqrt{1-x^2}}{x} \end{align*}

    Completing the 9 possibilities gives:

    \begin{align*} \sin( \arcsin x ) &= x & \sin( \arccos x ) &= \sqrt{1-x^2} & \sin( \arctan x ) &= \frac{x}{\sqrt{1+x^2}}\\ \cos( \arcsin x ) &= \sqrt{1-x^2} & \cos( \arccos x ) &= x & \cos( \arctan x ) &= \frac{1}{\sqrt{1+x^2}}\\ \tan( \arcsin x ) &= \frac{x}{\sqrt{1-x^2}} & \tan( \arccos x ) &= \frac{\sqrt{1-x^2}}{x} & \tan( \arctan x ) &= x \end{align*}


    This page titled B.3 Inverse Trigonometric Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Joel Feldman, Andrew Rechnitzer and Elyse Yeager via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?