Skip to main content
Mathematics LibreTexts

A.14: Highschool Material You Should be Able to Derive

  • Page ID
    91830
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    • Graphs of \(\csc\theta, \sec \theta\) and \(\cot \theta\text{:}\)
    \[ \csc \theta \nonumber \]
    \[ \sec \theta \nonumber \]
    \[ \cot \theta \nonumber \]
    • More Pythagoras

      \begin{align*} \sin^2\theta + \cos^2 \theta &=1 & \xrightarrow{\text{divide by $\cos^2\theta$}}&& \tan^2\theta + 1 &= \sec^2\theta\\ \sin^2\theta + \cos^2 \theta &=1 & \xrightarrow{\text{divide by $\sin^2\theta$}}&& 1 + \cot^2 \theta &=\csc^2\theta \end{align*}

    • Sine — double angle (set \(\beta =\alpha\) in sine angle addition formula)

      \begin{align*} \sin(2\alpha) &= 2\sin(\alpha)\cos(\alpha) \end{align*}

    • Cosine — double angle (set \(\beta =\alpha\) in cosine angle addition formula)

      \begin{align*} \cos(2\alpha) &= \cos^2(\alpha) - \sin^2(\alpha)\\ &= 2\cos^2(\alpha) - 1 & \text{(use $\sin^2(\alpha)= 1-\cos^2(\alpha)$)}\\ &= 1 - 2\sin^2(\alpha) & \text{(use $\cos^2(\alpha)= 1-\sin^2(\alpha)$)} \end{align*}

    • Composition of trigonometric and inverse trigonometric functions:

      \begin{align*} \cos( \arcsin x) &= \sqrt{1-x^2} & \sec( \arctan x) &= \sqrt{1+x^2} \end{align*}

      and similar expressions.

    This page titled A.14: Highschool Material You Should be Able to Derive is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Joel Feldman, Andrew Rechnitzer and Elyse Yeager via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?