Skip to main content
Mathematics LibreTexts

A.6: 3-D Coordinate Systems

  • Page ID
    92254
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A.6.1 Cartesian Coordinates

    Here is a figure showing the definitions of the three Cartesian coordinates \((x,y,z)\)

    cart1.svg

    and here are three figures showing a surface of constant \(x\text{,}\) a surface of constant \(x\text{,}\) and a surface of constant \(z\text{.}\)

    cart3.svg        cart4.svg        cart2.svg

    Finally here is a figure showing the volume element \(\mathrm{d}V\) in cartesian coordinates.

    cart5.svg

    A.6.2 Cylindrical Coordinates

    Here is a figure showing the definitions of the three cylindrical coordinates

    \[\begin{align*} r&=\text{ distance from }(0,0,0)\text{ to }(x,y,0)\\ \theta&=\text{ angle between the the $x$ axis and the line joining $(x,y,0)$ to $(0,0,0)$}\\ z&=\text{ signed distance from }(x,y,z) \text{ to the $xy$-plane} \end{align*}\]

    cyl1 (1).svg

    The cartesian and cylindrical coordinates are related by

    \[\begin{align*} x&=r\cos\theta & y&=r\sin\theta & z&=z\\ r&=\sqrt{x^2+y^2} & \theta&=\arctan\frac{y}{x} & z&=z \end{align*}\]

    Here are three figures showing a surface of constant \(r\text{,}\) a surface of constant \(\theta\text{,}\) and a surface of constant \(z\text{.}\)

    cyl3.svg        cyl4.svg        cyl2.svg

    Finally here is a figure showing the volume element \(\mathrm{d}V\) in cylindrical coordinates.

    cyl5.svg

    A.6.3 Spherical Coordinates

    Here is a figure showing the definitions of the three spherical coordinates

    \[\begin{align*} \rho&=\text{ distance from }(0,0,0)\text{ to }(x,y,z)\\ \vec{a}rphi&=\text{ angle between the $z$ axis and the line joining $(x,y,z)$ to $(0,0,0)$}\\ \theta&=\text{ angle between the $x$ axis and the line joining $(x,y,0)$ to $(0,0,0)$} \end{align*}\]

    spherical.svg

    and here are two more figures giving the side and top views of the previous figure.

    sphericalSide.svg            sphericalTop.svg

    The cartesian and spherical coordinates are related by

    \[\begin{align*} x&=\rho\sin\vec{a}rphi\cos\theta & y&=\rho\sin\vec{a}rphi\sin\theta & z&=\rho\cos\vec{a}rphi\\ \rho&=\sqrt{x^2+y^2+z^2} & \theta&=\arctan\frac{y}{x} & \vec{a}rphi&=\arctan\frac{\sqrt{x^2+y^2}}{z} \end{align*}\]

    Here are three figures showing a surface of constant \(\rho\text{,}\) a surface of constant \(\theta\text{,}\) and a surface of constant \(\vec{a}rphi\text{.}\)

    spher2.svg            spher3.svg            spher4.svg

    Finally, here is a figure showing the volume element \(\mathrm{d}V\) in spherical coordinates

    spher5.svg

    and two extracts of the above figure to make it easier to see how the factors \(\rho\ \mathrm{d}\vec{arphi}\) and \(\rho\sin\vec{a}rphi\ \mathrm{d}{\theta} \) arise.

    spher6.svg                    spher7.svg


    This page titled A.6: 3-D Coordinate Systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Joel Feldman, Andrew Rechnitzer and Elyse Yeager via source content that was edited to the style and standards of the LibreTexts platform.