Skip to main content
Mathematics LibreTexts

A.1: Trigonometry

  • Page ID
    92433
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A.1.1 Trigonometry — Graphs

    image-500.svg
    \[ \sin \theta \nonumber \]
    image-501.svg
    \[ \cos \theta \nonumber \]
    image-502.svg
    \[ \tan \theta \nonumber \]

    A.1.2 Trigonometry — Special Triangles

    special_triangles.svg

    From the above pair of special triangles we have

    \[\begin{align*} \sin \frac{\pi}{4} &= \frac{1}{\sqrt{2}} & \sin \frac{\pi}{6} &= \frac{1}{2} & \sin \frac{\pi}{3} &= \frac{\sqrt{3}}{2}\\ \cos \frac{\pi}{4} &= \frac{1}{\sqrt{2}} & \cos \frac{\pi}{6} &= \frac{\sqrt{3}}{2} & \cos \frac{\pi}{3} &= \frac{1}{2}\\ \tan \frac{\pi}{4} &= 1 & \tan \frac{\pi}{6} &= \frac{1}{\sqrt{3}} & \tan \frac{\pi}{3} &= \sqrt{3} \end{align*}\]

    A.1.3 Trigonometry — Simple Identities

    • Periodicity

      \[\begin{align*} \sin(\theta+2\pi) &= \sin(\theta) & \cos(\theta+2\pi) &= \cos(\theta) \end{align*}\]

    • Reflection

      \[\begin{align*} \sin(-\theta)&=-\sin(\theta) & \cos(-\theta) &=\cos(\theta) \end{align*}\]

    • Reflection around \(\pi/4\)

      \[\begin{align*} \sin\left(\tfrac{\pi}{2}-\theta\right)&=\cos\theta & \cos\left(\tfrac{\pi}{2}-\theta\right)&=\sin\theta \end{align*}\]

    • Reflection around \(\pi/2\)

      \[\begin{align*} \sin\left(\pi-\theta\right)&=\sin\theta & \cos\left(\pi-\theta\right)&=-\cos\theta \end{align*}\]

    • Rotation by \(\pi\)

      \[\begin{align*} \sin\left(\theta+\pi\right)&=-\sin\theta & \cos\left(\theta+\pi\right)&=-\cos\theta \end{align*}\]

    • Pythagoras

      \[\begin{align*} \sin^2\theta + \cos^2 \theta &=1\\ \tan^2\theta + 1 &= \sec^2\theta\\ 1 + \cot^2 \theta &=\csc^2\theta \end{align*}\]

    • \(\sin\) and \(\cos\) building blocks

      \[\begin{gather*} \tan\theta=\frac{\sin\theta}{\cos\theta}\quad \csc\theta=\frac{1}{\sin\theta}\quad \sec\theta=\frac{1}{\cos\theta}\quad \cot\theta=\frac{\cos\theta}{\sin\theta}=\frac{1}{\tan\theta} \end{gather*}\]

    A.1.4 Trigonometry — Add and Subtract Angles

    • Sine

      \[\begin{align*} \sin(\alpha \pm \beta) &= \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta) \end{align*}\]

    • Cosine

      \[\begin{align*} \cos(\alpha \pm \beta) &= \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta) \end{align*}\]

    • Tangent

      \[\begin{align*} \tan(\alpha+\beta)&=\frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta}\\ \tan(\alpha-\beta)&=\frac{\tan\alpha-\tan\beta}{1+\tan\alpha\tan\beta} \end{align*}\]

    • Double angle

      \[\begin{align*} \sin(2\theta) &= 2\sin(\theta)\cos(\theta)\\ \cos(2\theta) &= \cos^2(\theta) - \sin^2(\theta)\\ &= 2\cos^2(\theta) - 1\\ &= 1 - 2\sin^2(\theta)\\ \tan(2\theta) &= \frac{2\tan(\theta)}{1-\tan^2\theta}\\ \cos^2\theta&=\frac{1+\cos(2\theta)}{2}\\ \sin^2\theta&=\frac{1-\cos(2\theta)}{2}\\ \tan^2\theta&=\frac{1-\cos(2\theta)}{1+\cos(2\theta)} \end{align*}\]

    • Products to sums

      \[\begin{align*} \sin(\alpha)\cos(\beta)&= \frac{\sin(\alpha+\beta) + \sin(\alpha-\beta)}{2}\\ \sin(\alpha)\sin(\beta)&= \frac{\cos(\alpha-\beta) - \cos(\alpha+\beta)}{2}\\ \cos(\alpha)\cos(\beta)&= \frac{\cos(\alpha-\beta) + \cos(\alpha+\beta)}{2} \end{align*}\]

    • Sums to products

      \[\begin{align*} \sin\alpha+\sin\beta &= 2 \sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}\\ \sin\alpha-\sin\beta &= 2 \cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}\\ \cos\alpha+\cos\beta &= 2 \cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}\\ \cos\alpha-\cos\beta &= -2 \sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} \end{align*}\]

    A.1.5 Inverse Trigonometric Functions

    image-504.svg

    \[ \arcsin x \nonumber \]

    Domain: \(-1 \leq x \leq 1\)

    Range: \(-\frac{\pi}{2} \leq \arcsin x \leq \frac{\pi}{2}\)

    image-505.svg

    \[ \arccos x \nonumber \]

    Domain: \(-1 \leq x \leq 1\)

    Range: \(0 \leq \arccos x \leq \pi\)

    image-506.svg

    \(\arctan x\)

    Domain: all real numbers

    Range: \(-\frac{\pi}{2} \lt \arctan x \lt \frac{\pi}{2}\)

    Since these functions are inverses of each other we have

    \[\begin{align*} \arcsin(\sin \theta) &= \theta & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\\ \arccos(\cos \theta) &= \theta & 0 \leq \theta \leq \pi\\ \arctan(\tan \theta) &= \theta & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \end{align*}\]

    and also

    \[\begin{align*} \sin(\arcsin x) &= x & -1 \leq x \leq 1\\ \cos(\arccos x) &= x & -1 \leq x \leq 1\\ \tan(\arctan x) &= x & \text{any real } x \end{align*}\]

    image-507.svg

    \[ \textrm{arccsc} x \nonumber \]

    Domain: \(|x|\ge 1\)

    Range: \(-\frac{\pi}{2} \leq \textrm{arccsc} x \leq \frac{\pi}{2}\)

    \[ \textrm{arccsc} x \ne 0 \nonumber \]

    image-508.svg

    \[ \textrm{arcsec} x \nonumber \]

    Domain: \(|x|\ge 1\)

    Range: \(0 \leq \textrm{arcsec} x \leq \pi\)

    \[ \textrm{arcsec} x \ne \frac{\pi}{2} \nonumber \]

    image-509.svg

    \[ \textrm{arccot} x \nonumber \]

    Domain: all real numbers

    Range: \(0 \lt \textrm{arccot} x \lt \pi\)

     

    Again

    \[\begin{align*} \textrm{arccsc}(\csc \theta) &= \theta & -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2},\ \theta\ne 0\\ \textrm{arcsec}(\sec \theta) &= \theta & 0 \leq \theta \leq \pi,\ \theta\ne \frac{\pi}{2}\\ \textrm{arccot}(\cot \theta) &= \theta & 0 \lt \theta \lt \pi \end{align*}\]

    and

    \[\begin{align*} \csc(\textrm{arccsc} x) &= x & |x|\ge 1\\ \sec(\textrm{arcsec} x) &= x & |x|\ge 1\\ \cot(\textrm{arccot} x) &= x & \text{any real } x \end{align*}\]


    This page titled A.1: Trigonometry is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Joel Feldman, Andrew Rechnitzer and Elyse Yeager via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?