Skip to main content
Mathematics LibreTexts

A.6: 3d Coordinate Systems

  • Page ID
    92438
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A.6.1 Cartesian Coordinates

    Here is a figure showing the definitions of the three Cartesian coordinates \((x,y,z)\)

    cart1.svg

    and here are three figures showing a surface of constant \(x\text{,}\) a surface of constant \(x\text{,}\) and a surface of constant \(z\text{.}\)

    cart3.svg            cart4.svg            cart2.svg

    Finally here is a figure showing the volume element \(\text{d}V\) in cartesian coordinates.

    cart5.svg

    A.6.2 Cylindrical Coordinates

    Here is a figure showing the definitions of the three cylindrical coordinates

    \[\begin{align*} r&=\text{ distance from }(0,0,0)\text{ to }(x,y,0)\\ \theta&=\text{ angle between the the $x$ axis and the line joining $(x,y,0)$ to $(0,0,0)$}\\ z&=\text{ signed distance from }(x,y,z) \text{ to the $xy$-plane} \end{align*}\]

    cyl1.svg

    The cartesian and cylindrical coordinates are related by

    \[\begin{align*} x&=r\cos\theta & y&=r\sin\theta & z&=z\\ r&=\sqrt{x^2+y^2} & \theta&=\arctan\frac{y}{x} & z&=z \end{align*}\]

    Here are three figures showing a surface of constant \(r\text{,}\) a surface of constant \(\theta\text{,}\) and a surface of constant \(z\text{.}\)

    cyl3.svg            cyl4.svg            cyl2.svg

    Finally here is a figure showing the volume element \(\text{d}V\) in cylindrical coordinates.

    cyl5.svg

    A.6.3 Spherical Coordinates

    Here is a figure showing the definitions of the three spherical coordinates

    \[\begin{align*} \rho&=\text{ distance from }(0,0,0)\text{ to }(x,y,z)\\ \varphi&=\text{ angle between the $z$ axis and the line joining $(x,y,z)$ to $(0,0,0)$}\\ \theta&=\text{ angle between the $x$ axis and the line joining $(x,y,0)$ to $(0,0,0)$} \end{align*}\]

    spherical.svg

    and here are two more figures giving the side and top views of the previous figure.

    sphericalSide.svg                sphericalTop.svg

    The cartesian and spherical coordinates are related by

    \[\begin{align*} x&=\rho\sin\varphi\cos\theta & y&=\rho\sin\varphi\sin\theta & z&=\rho\cos\varphi\\ \rho&=\sqrt{x^2+y^2+z^2} & \theta&=\arctan\frac{y}{x} & \varphi&=\arctan\frac{\sqrt{x^2+y^2}}{z} \end{align*}\]

    Here are three figures showing a surface of constant \(\rho\text{,}\) a surface of constant \(\theta\text{,}\) and a surface of constant \(\varphi\text{.}\)

    spher2.svg            spher3.svg            spher4.svg

    Here is a figure showing the surface element \(\text{d}S\) in spherical coordinates

    spher11.svg

    and two extracts of the above figure to make it easier to see how the factors \(\rho\ \text{d}\varphi\) and \(\rho\sin\varphi\ \text{d}\theta\) arise.

    spher9.svg                        spher10.svg

    Finally, here is a figure showing the volume element \(\text{d}V\) in spherical coordinates

    spher5.svg


    This page titled A.6: 3d Coordinate Systems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Joel Feldman, Andrew Rechnitzer and Elyse Yeager via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.