5.E: Curve Sketching (Exercises)
( \newcommand{\kernel}{\mathrm{null}\,}\)
These are homework exercises to accompany David Guichard's "General Calculus" Textmap. Complementary General calculus exercises can be found for other Textmaps and can be accessed here.
5.1: Maxima and Minima
In problems 1--12, find all local maximum and minimum points
Ex 5.1.1
Ex 5.1.2
Ex 5.1.3
Ex 5.1.4
Ex 5.1.5
Ex 5.1.6
Ex 5.1.7
Ex 5.1.8
Ex 5.1.9
Ex 5.1.10 \exercise
Ex 5.1.11
Ex 5.1.12 \( f(x) =\cases{ -2 &
Ex 5.1.13 For any real number
Ex 5.1.14 Explain why the function
Ex 5.1.15 How many critical points can a quadratic polynomial function have? (answer)
Ex 5.1.16 Show that a cubic polynomial can have at most two critical points. Give examples to show that a cubic polynomial can have zero, one, or two critical points.
Ex 5.1.17 Explore the family of functions
Ex 5.1.18 We generalize the preceding two questions. Let
5.2: The First Derivative Test
In 1--13, find all critical points and identify them as local maximum points, local minimum points, or neither.
Ex 5.2.1
Ex 5.2.2
Ex 5.2.3
Ex 5.2.4
Ex 5.2.5
Ex 5.2.6
Ex 5.2.7
Ex 5.2.8
Ex 5.2.9
Ex 5.2.10
Ex 5.2.11
Ex 5.2.12
Ex 5.2.13
Ex 5.2.14 Find the maxima and minima of
Ex 5.2.15 Let
Ex 5.2.16 Let
Ex 5.2.17 Let
5.3: The Second Derivative Test
Find all local maximum and minimum points by the second derivative test.
Ex 5.3.1
Ex 5.3.2
Ex 5.3.3
Ex 5.3.4
Ex 5.3.5
Ex 5.3.6
Ex 5.3.7
Ex 5.3.8\)y=\cos(2x)-x\) (answer)
Ex 5.3.9
Ex 5.3.10
Ex 5.3.11
Ex 5.3.12
Ex 5.3.13
Ex 5.3.14
Ex 5.3.15
Ex 5.3.16
Ex 5.3.17
Ex 5.3.18
5.4: Concavity and Inflection Points
Exercises 5.4
Describe the concavity of the functions in 1--18.
Ex 5.4.1
Ex 5.4.2
Ex 5.4.3
Ex 5.4.4
Ex 5.4.5
Ex 5.4.6
Ex 5.4.7
Ex 5.4.8$y=\sin x + \cos x\) (answer)
Ex 5.4.9
Ex 5.4.10
Ex 5.4.11
Ex 5.4.12
Ex 5.4.13
Ex 5.4.14
Ex 5.4.15
Ex 5.4.16
Ex 5.4.17
Ex 5.4.18
Ex 5.4.19Identify the intervals on which the graph of the function
Ex 5.4.20Describe the concavity of
Ex 5.4.21Let
5.5: Asymptotes and Other Things to Look For
Sketch the curves. Identify clearly any interesting features, including local maximum and minimum points, inflection points, asymptotes, and intercepts.
Ex 5.5.1
Ex 5.5.2
Ex 5.5.3
Ex 5.5.4
Ex 5.5.5
Ex 5.5.6
Ex 5.5.7
Ex 5.5.8
Ex 5.5.9
Ex 5.5.10
Ex 5.5.11
Ex 5.5.12
Ex 5.5.13
Ex 5.5.14
Ex 5.5.15
Ex 5.5.16
Ex 5.5.17
Ex 5.5.18
Ex 5.5.19
Ex 5.5.20
Ex 5.5.21
Ex 5.5.22
Ex 5.5.23
Ex 5.5.24
Ex 5.5.25
Ex 5.5.26
For each of the following five functions, identify any vertical and horizontal asymptotes, and identify intervals on which the function is concave up and increasing; concave up and decreasing; concave down and increasing; concave down and decreasing.
Ex 5.5.27 \( f(\theta)=\sec(\theta)\)
Ex 5.5.28
Ex 5.5.29
Ex 5.5.30
Ex 5.5.31
Ex 5.5.32Let


