7.1: Two Examples
( \newcommand{\kernel}{\mathrm{null}\,}\)
Up to now we have been concerned with extracting information about how a function changes from the function itself. Given knowledge about an object's position, for example, we want to know the object's speed. Given information about the height of a curve we want to know its slope. We now consider problems that are, whether obviously or not, the reverse of such problems.
Figure 7.1.1. Approximating the area under y=3x with rectangles.
What you will have noticed, of course, is that while the problem in the second example appears to be much different than the problem in the first example, and while the easy approach to problem one does not appear to apply to problem two, the "approximation'' approach works in both, and moreover the {\it calculations are identical.} As we will see, there are many, many problems that appear much different on the surface but that turn out to be the same as these problems, in the sense that when we try to approximate solutions we end up with mathematics that looks like the two examples, though of course the function involved will not always be so simple.
Even better, we now see that while the second problem did not appear to be amenable to approach one, it can in fact be solved in the same way. The reasoning is this: we know that problem one can be solved easily by finding a function whose derivative is 3t. We also know that mathematically the two problems are the same, because both can be solved by taking a limit of a sum, and the sums are identical. Therefore, we don't really need to compute the limit of either sum because we know that we will get the same answer by computing a function with the derivative 3t or, which is the same thing, 3x.
It's true that the first problem had the added complication of the "10'', and we certainly need to be able to deal with such minor variations, but that turns out to be quite simple. The lesson then is this: whenever we can solve a problem by taking the limit of a sum of a certain form, we can instead of computing the (often nasty) limit find a new function with a certain derivative.